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Outline

Motivation

Backdoor injection with and without label poisoning

Contribution
* Backdoor Injection in video signals
e Luminance based backdoor
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Experimental results




Motivation

e Backdoor attacks are serious threat to deep learning

* DNNs are vulnerable to adversarial attacks in particular backdoor attacks

Normal inputs =y Correct output

Desired
_ malevolent
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Malevolent input

The backdoor is

activated only by

properly crafted
inputs
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Backdoor Injection without Label Poisoning
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Backdoor Injection without Label Poisoning

Testing
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Backdoor Injection with Label Poisoning

Training
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Backdoor Injection with Label Poisoning
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Label vs. No label poisoning
* Fraction: with label poisoning you need more samples
e Stealthiness: Label poisoningis less stealthy

* Attack power: label poisoning requires less attacking power
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Contribution

* Backdoor attack against DNN-based anti-spoofing VIDEO rebroadcast
detector

* We consider video signals rather than just images

access granted/
access denied

impostor camera authentication engine
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Challenges and Solution

* Black-box attack

 Stealthiness

* Backdoor must include temporal dimension

* Backdoor must survive a number of transformations related to the

rebroadcast
» Geometric transformations, gamma correction and white balance
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Challenges and Solution
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Our Backdoor Video Attack Signal

* Introduce temporal changes in the video signal

B(z;, A;w) = (1 — A)xj + Asin(ZLL )z,

FPS
/ |

Video frame

Attack power 1emporalfrequency  Frame per second

* A can be different at testing time attacking power A
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Our Backdoor Video Attack Signal: Example

* Mean intensity varied in [1 — 2A, 1]
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Example of mean values plot of a sequences and frame block for A= 0.1
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Experimental Setup

* [ =[0,1], real (0) and spoofed video (1)

* Video sequence of 12 frames (24 FPS sampled by 2)

* Faces are cropped and resized to 64x64 RGB

* Model input 12 x64 x 64 x 3

 aisthe percentage of samples poisoned during training

 a; = 50% is the percentage of samples poisoned during testing
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Experimental Setup: Model Architecture

@ AP
&‘é\ ,@,Q

aﬂk@] | ?{ 3D CNN J—

|

—

A
i—‘ LSTM » -
()

[ 3D CNN H —>

- 6 - R

[ 3D CNN J—

4@

[

I
[ ] ]

64 x 64 x 3

 Each 3 frames are fed to a pair of conv layers with 8 and 16 3x3x3 kernels

 Each layer is followed by BN and 1x2x2 max-pooling
 The flattened output is fed to LSTM layer with 6 units
* Pristine performance: 97.5% val. accuracy, 99.6% test precision, 96.5% test
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Experimental Setup: Dataset

IDIAP REPLAYATTACK anti-spoofing dataset

1300 video clips of attacks of 50 different identities

320x240 videos at 25 FPS and 9 s length

 Rebroadcast attacks are done using iPhone and iPad
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Experimental Evaluation: Backdoors WITH label poisoning
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Experimental Evaluation: Backdoors WITH label poisoning
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Experimental Evaluation: Effect of Geometric and Contrast Transformations

e We need the backdoor to survive analog-to-digital transformation and vice-
Versa

 We simulate geometric and contrast (gamma and white balance)
transformations

 The transformation is applied after the backdoor injection and before the crop

* Simulate rebroadcast attack using hand-held display device
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Experimental Evaluation: Effect of Geometric and Contrast Transformations
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Experimental Evaluation: Backdoors WITHOUT label poisoning

mﬂNn label poisoning: varying a (w=1, A=0.05)
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Conclusions

* Novelillumination-based video backdoor attack against DNN anti-spoofing
detection systems

 The attack is robust against geometric transformation and to some extend
against intensity

* With label poisoning, increasing the amplitude and frequency makes the
attack more powerful

 Low attack portions are enough
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Future Work
 Adapt the backdoor signal to the training set
 Turn the presented attack into a physical attack

* Using physical alteration of the environment
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