Deep Aggregation of Regional Convolutional Activations for Content Based Image Retrieval

Konstantin Schall, Kai Uwe Barthel, Nico Hezel, and Klaus Jung

Visual Computing Group, HTW Berlin

visual-computing.com

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Challenges in Image Retrieval

1. How to generate feature vectors?

Activation Maps by CNNs

• Layers of Convolutional Neural Networks produce a set of activation maps $\mathcal{X}^{l} = \{\mathcal{X}_{i}^{l} | i = 1 \dots C^{l}\}$, with C^{l} being the number of filters in layer l.

 Number of filters C is increasing while the width W and the height H are decreasing in deeper layers

Generation of Feature Vectors

- 1. Extraction of activation maps \mathcal{X}^l where l is the last convolutional layer in a CNN
- 2. Compute the average of C activation maps $A \in \mathcal{X}^l$ with A(w, h) being a single activation

Generation of Feature Vectors

- 1. Extraction of activation maps \mathcal{X}^l where l is the last convolutional layer in a CNN
- 2. Compute the average of C activation maps $A \in \mathcal{X}^l$ with A(w, h) being a single activation

Regional Max Pooling

RMAC: Regional Maximal Activations of Convolutions (Tolias et al., 2016)

- 1. Extraction of activation maps \mathcal{X}^{l}
- 2. Search for maximal activation values in a set of 20 regions $R^A = \{R_i^A | i = 1 \dots 20\}$, for each $A \in \mathcal{X}^l$

Regional Max Pooling

RMAC: Regional Maximal Activations of Convolutions (Tolias et al., 2016)

- 1. Extraction of activation maps \mathcal{X}^{l}
- 2. Search for maximal activation values in a set of 20 regions $R^A = \{R_i^A | i = 1 \dots 20\}$, for each $A \in \mathcal{X}^l$

Regional Max Pooling

RMAC: Regional Maximal Activations of Convolutions (Tolias et al., 2016)

- 1. Extraction of activation maps \mathcal{X}^{l}
- 2. Search for maximal activation values in a set of 20 regions $R^A = \{R_i^A | i = 1 \dots 20\}$, for each $A \in \mathcal{X}^l$

Challenges in Image Retrieval

1. How to generate feature vectors?

2. How to optimize model weights for the specific task of retrieval?

Challenges in Image Retrieval

1. How to generate feature vectors?

2. How to optimize model weights for the specific task of retrieval?

2D embeddings for MNIST trained with Softmax Cross Entropy

2D embeddings for MNIST trained with *Triplet Loss*

Finetuning for Retrieval

- DIR: Deep Image Retrieval (Gordo et al., 2017)
- End-to-End image retrieval system.
- Finetune a ResNet101 with Triplet loss
- Total training time: approximately 168 hours

Researched Questions

- 1. Why only regional max pooling?
- 2. Are all regions equally important?
- 3. Is Triplet loss the ideal loss function?
- 4. Is an increased image size necessary during training?

Average vs. Max Pooling

- ResNet50
 pretrained on

 ImageNet
- 6 differently pooled FV's
- Larger image size improves retrieval (in most cases)

21 Regions

- Make use of average and max pooling
- In total we use 21 regions (global is added):

Regional Max and Average Pooling

RAMAC: Regional Average and Maximal Activations of Convolutions

- 1. Extraction of activation maps \mathcal{X}^{l}
- 2. Search for max. and avg. activation values in a set of 21 regions $R^A = \{R_i^A | i = 1 \dots 21\}$, for each $A \in \mathcal{X}^l$

Regional Max and Average Pooling

RAMAC: Regional Average and Maximal Activations of Convolutions

- 1. Extraction of activation maps \mathcal{X}^{l}
- 2. Search for max. and avg. activation values in a set of 21 regions $R^A = \{R_i^A | i = 1 \dots 21\}$, for each $A \in \mathcal{X}^l$

Aggregation of Pooled Values

 DARAC: Deep Aggregation of Regional Activations of Convolutions

NRA Loss Function

$$J = -\frac{1}{m} \sum_{i=1}^{m} \left(\log(\underline{s_{i,\max}^+}) + \log(1 - \underline{s_{i,\min}^-}) \right)$$

Approximates nonlinear ranks to contract similar and disperse dissimilar images

Proposed System

- ResNet50 v2 pretrained on ImageNet
- Training with Google Landmarks dataset
- DARAC aggregation and train with NRA Loss
- Total training time: approximately 24 hours

Multi Resolution

Input image size = 1020

Evaluation

Mean Average Precision scores for the proposed steps

GL = Google Landmarks. CL = Cleaned Landmarks. W = PCA Whitening

FV	Training Set	lmage Size	Oxford	Paris	Holidays
Glob. Avg.	ImageNet	299	48.7	68.9	86.1
Glob. Avg.	GL	299	75.3	87.6	91.6
DARAC	GL	299	77.6	89.4	92.8
DARAC + W	GL	299	81.4	90.8	93.7
DARAC + W	GL	540	82.2	91.9	95.5
DARAC + W	GL	MR	83.4	93.0	96.9
DARAC + W	CL	MR	88.2	94.1	95.5

Comparison to Similar systems

Mean Average Precision scores for the proposed steps

System	Matching	MR	Oxford	Paris	Holidays
DELF (GL)	local	7 (0.25 – 2)	83.8	85.0	-
GeM	global	5 (0.25 – 1)	87.8	92.7	93.9
DIR (CL)	global	550, 800, 1050	86.1	94.5	94.8
Ours (GL)	global	299, 540, 1020	83.4	93.0	96.9
Ours (CL)	global	299, 540, 1020	88.2	94.1	95.5

GL = Google Landmarks. CL = Cleaned Landmarks.

Comparison to Similar systems

Mean Average Precision scores for the proposed steps.

System	Matching	MR	Oxford	Paris	Holidays
DELF (GL)	local	7 (0.25 – 2)	83.8	85.0	_
GeM	global	5 (0.25 – 1)	87.8	92.7	93.9
DIR (CL)	global	550, 800, 1050	86.1	94.5	94.8
Ours (GL)	global	299, 540, 1020	83.4	93.0	96.9
Ours (CL)	global	299, 540, 1020	88.2	94.1	95.5

GL = Google Landmarks. CL = Cleaned Landmarks.

- Fastest inference and training
- Lowest memory footprint
- Very good retrieval quality

Thank you very much!

More Information at

www.visual-computing.com