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1. Motivation

s* We exploit the redundancies occurring as a result of Max Pool (MAX) downsampling effect in CNNs and propose a method
to eliminate the redundancies to save dynamic power in FPGA stream-based CNN accelerators

% FLOPS redundancy ina CONV — MAX layer = (1 — ) * 100
_ _ (Stride of MAX)?
eg : if Max pool stride = 2, FLOPS redundancy = 75%

3. Approximation Scheme

The proposed ApproxConv performs Convolution operation with original CONV weights quantized to power-of-2 levels,
which enables use of light-weight bit-shifters in place of costly multipliers. This is further optimized by performing a static

analysis to identify the least number of quantization levels required (N,) using an iterative search.
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2. Proposed Method

The proposed method aims to eliminate the computational redundancies arising from Max pool layer
by predicting the feature map candidatesin the neighbourhood that will result in maximum activation prior
to performing Convolution. This scheme is referred to as ‘ApproxConv’.
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4. Accuracy Evaluation
TABLE II: Accuracy Evaluation
. . L Baseline . . Proposed Method
a) Qua Nntization Ievel Seda rCh Network Accuracy (Top-173) Sign Connect NI (By Layer) | Power-of-2 Levels (By Layer) | Accuracy (Top-175)
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5. Hardware Evaluation Baseline hardware architecture(single layer) Proposed hardware architecture (single layer) 6. Results Summary
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