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images feature vectors embedding

e Similar images have similar feature vectors (FVs)

w Embeddings can be used for similarity search
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® Image similarity search:
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Toy embedding of 12 FVs
(3 classes with 4 FVs)

® Deep metric learning based loss functions:
Try to optimize the embedding by enforcing
distances between vectors of the same class
to be smaller than to different classes.
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Contrastive Loss
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Contrastive Loss

Only uses two samples (feature vectors)
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same class: 5"1-]- 1 different class: y, . =0



Triplet Loss

Uses three samples:
an anchor: a
3 positive sample of the same class: +
3 negative sample of a different class: —

Jo+,— =max (0,D; . — D; _ +«)




Lifted Structured Loss

Uses more samples from one class,
however focus on one class only
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Uses multiple pairs of same class samples,
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Uses multiple pairs of same class samples,
however only one pair per class

N
= > log ( ;eXpwan(wj) ~ f@)"f @)

Example of N=3 classes = 3 pairsiandi+:

l

with regard to the blue class with reqgard to the black class



QOur proposal:

e Use multiple classes and

e PMultiple samples per class

® As retrieval quality does not depend on the
actual distances, but rather on the ranking
order, use normalized approximated ranks
instead of distances

® [Focus on those batch elements that
hurt image retrieval quality most

® Use a nonlinear rank transformation function
to boost the impact of ranking errors
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Nonlinear Rank Approximation
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Nonlinear Rank Approximation

® For each anchor i the distances
are converted to approximated

normalized ranks:
D; i — D; min

Ty 5 —
! Di,max — Dz’,min

e [0,1]

® These ranks are
nonlinearly transformed to similarities:

sij = 1 —w(ri;)
Most distant sample of the same class: Closest sample of a different class:
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NRA Loss Function

m
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Three of the 12 specific configurations of the previous example:




Evaluation of Nonlinear Transfer Function w

e Ihe approximated ranks r; ;. are nonlinearly

i,]
transformed to similarities by 9Si,j = 1 — w(ri,j)
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Transfer function (left), the corresponding loss component (center), and Recall@K results on the Cars196 data set (right)
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for different loss functions
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(d) Nonlinear Rank Approx. Loss (ours)
mAP = 98.8

(¢) Lifted Structured Loss
mAP = 98.4

mAP = 97.8

(b) Triplet Loss

(a) Softmax Cross Entropy
mAP = 93.3



Fine Tuning for Unseen Object Retrieval

® Protocol introduced by Song et al. 2016
is strictly followed for comparability

e 3 Datasets CUB200-2011, Cars196, Stanford
Online Products (SOP) are split such that the
images from the first half of cateqories are used
for training and images from the second half are
used for testing

® (GoogleNet is used as the CNN

® Feature vectors in 64 and 512 dimensions



Fine Tuning for Unseen Object Retrieval

Recall@1 values for 64/512 dimensional FVs

(Reproduced results)

Method CUB Cars196 SOP

Triplet 46.3 /51.6 | 56.5/58.4 | 57.2/59.8
Lifted 45.7 / 55.7 | 48.8/50.7 | 61.6/63.8
N-Pair 51.8/56.4 | 63.3/68.3 | 63.6/65.4
NRA (ours) | 57.6 /64.3 | 73.0/81.9 | 71.9/ 75.6




Comparison to the State of the Art

Recall@1 values from different methods

Method Network Dim. CUB Cars196 SOP
Margin ResNet50 v2 128 63.6 79.6 72.7
NRA (ours) | ResNet50 v2 128 64.5 79.9 75.3
Angular GooglLeNet 512 54.7 71.4 70.9
A-BIER GooglLeNet 512 57.5 82.0 74.2
ABE-8 GooglLeNet (x8) | 512 60.6 85.2 76.3
NRA (ours) | GoogLeNet 512 64.3 82.1 75.6




Thank you very much!

More Information at

WWW.Visual-computing.com



