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Sound Source Localization
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Application Areas

Healthcare, Speech Enhancement, Human-Robot Interaction etc.

DCASE 2018: task monitoring in domestic activities Pepper; the semi-humanoid robot
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Problem Definition

Multiple Sound Source 2D Localization

Given: . G
— Sound from two or more microphone arrays %’G
— Multiple sound sources ég @
Results: @
— 2D coordinates in an horizontal plane (x,y) for all
sound sources. y L

B o

X mic-array



Classical Methods on 2D Localization

Combining Direction of Arrivals (DOAs) to obtain 2D position
— Association ambiquity problem [5, 6]
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[5] Wing-Kin et al., “Tracking an unknown time-varying number of speakers using tdoa measurements: a random finite set approach,” IEEE Transactions on Signal
Processing (2006).

[6] Alexandridis and Mouchtaris, “Multiple sound source location estimation in wireless acoustic sensor networks using doa estimates: The data-association problem,”
IEEE/ACM Trans. Audio, Speech and Lang. Proc. (2018).
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Our Approach

Data-driven based approach; specifically deep-learning.

Microphones
Sound
features

v/ Solve association ambiguity implicitly
v/ Map sound features directly to positions

v/ Adapt to difficult acoustic conditions

Coordinates
(X,y)

X Need data to train

X Data specific to a microphone configuration






Learning Multiple Sound Source 2D Localization
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Input Selection and Neural Network Architecture
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Proposed Neural Network Architecture

original array-encoder Pair-wise Feature

/ » |earn features from every mic pairs.
STFT1
»
STFT2

Dec. _ .
( original pair-wise feature \

STFT2 : _E; |
~ — -
STFT | [F3_| STFT
:
= Learn features with-in same mic-array..
= Shared data between multiple encoders. K j

Help network to generalize better
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OQutput Representation and Loss Function

Representing 2D coordinates (x, y) for multiple sound sources.

—Tight grid—

cell acn'vig
0 1

Representation
= M x N grid
= Active/Inactive cell

Loss Function
= Binary Cross Entropy (BCE)

Issue: a detailed grid (M and N) is required for accurate localization

- difficult to train due to an imbalance of # of active/inactive cells.
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Proposed Output Representation

Heatma Refined grid, [ — =
{(dx, dy)
T s
T 5
activity distribution cell activit.y
O . 1 )
Representation Representation
= M x N grid = M x N grid
= Probability distribution = Active/lnactive cell + Relative Location
Loss Function Loss Function

= Mean Squared Error (MSE) = BCE + MSE
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Post Processing : Keypoint Retrieval

Converting Output Representation = Sound Source Locations (X, y); Keypoints

Tight grid and Refined grid
— Non-maximum suppression (NMS) and Thresholding

Heat map

Put to zero non- Refining Position
maximal values
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Experimental Setup

Open space 6x6 meters

One to three sound sources
— Musical excerpts (Classical & Funk, Jazz)

Recording using two linear microphone arrays

0.1175 '

Kinect Xbox One

16

————————————————————————————————————————

—————————————————————————————————————————

48

2 KinectO 4 ° 6



Data Collection
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Synthetic <)
& pyroomacoustics

Real-World

LESS data in Real-World

Dataset Split Excerpts # of Srcs | Samples
train-S classical-funk 1 or?2 100000
validate-S classical-funk 1 or2 5000
Synthetic test-S0 classical-funk 1 or 2 5000
test-S1 classical-funk 3 2500
test-S2 jazz Tor2 5000
train-A classical-funk 1 or2 100000
Real world with validate-A | classical-funk 1 or2 5000
Augmentation test-A0 class;cal-funk 1 or 2 5000
test-Al classical-funk 3 2500
test-A2 jazz 1 or 2 5000
test-_RT classical-funk Tor2 600
Real world test-R1 classical-funk 3 300
test-R2 jazz lor2 600




Results : Output Representation Comparison

GOAL - Which output representation perform best?

Resolution 0.3 m

Output rep. Pre (1) Rec(f) F1(1) RMSE (])
Tight Grid 0.38 0.87 0.53 0.15
R ETY 0.94 0.88 0.90 0.10

Refined Grid 0.91 0.87 0.89 0.10

= Tight grid gives competitive recall, but poor precision.

* Heat map and Refined grid outperform Tight grid on large margin.
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Results : Architecture Design Comparison

GOAL - Easier to generalize with proposed architecture improvement?

F1 (1) RMSE (]) F1(1) RMSE (])

0.68 0.13 0.63 0.15

Array Encoder + Pair-Wise

= | esser training data - Larger performance gap.
= Proposed architecture requires less data to train.
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Other Results

Train with 1 or 2 sources and Test with 3 sound sources dataset.

= (Generalization on the number of sound source can be observed.

Train with Classical & Funk and Test with Jazz dataset.

= Good Generalization on musical genres can be observed in synthetic data.

Comparison between synthetic and real world dataset

= Performance drop due to the lack of data diversity for training.
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Conclusion

Proposed method to learn multiple sound source 2D localization.
— Encoding-decoding network architecture with two improvements.
— Two novel output representations.
— Extensive experiments both in synthetic and real-world data.

Future Direction : Improving result in real-world experiment.
— Use simulation to generate a large amount of labeled data.

— Train model so that the knowledge is transferrable.
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Thank you for your kind attention.

Question & Answer






Multiple sound source 2D localization

Results on synthetic data on heatmap representation

TP: 1, FP: 0, FN: 1

TP: 1, FP: O, FN: 1 TP 1, FP: 1, FN: 2 TP:2,FP:0,FN: 1

TP:-1,FP: 0, FN: 2
= resolution: 0.3 = resolution: 0.3 = resolution: 0.3 = resolution: 0.3 = resolution: 0.3 = resolution: 0.3



Sim-to-Real Gap in Sound

Simulation Reality

Possible causes for the gap
« Wave propagation approx.
* Reverberation

* Ambient noise




Sim-to-Real Gap in Sound - spectrum

Simulation Reality




Architecture detalls

TABLE II: Deep neural network detailed architecture

Block Filters Kernel Conv type Norm  Activation
Input Spectral features (one array): 8x9x256
Pair-wise Pairs of microphones (one array): 24x9x256
feature Reshape: 24x9x256 — 9x1x24x256
extraction 8 2x7 conv2d bn2d LeakyReLU
Reshape: 9x8x12x256 — 96x9x256
| 128 1x5 conv2d bn2d LeakyReLU | x5
64 1x3 conv2d LeakyReLU
Encoder 32 1x3 conv2d LeakyReLU
16 9x4 conv2d LeakyReLU
Reshape: 16x1x32 — 512x1x1
256 3x3 dconv2d bn2d RelLU
128 3x3 / 2x2 dconv2d bn2d ReLLU
64 3x3 dconv2d bn2d ReL.U
Decoder 32 3x3 dconv2d bn2d ReL.U
16 3x3 conv2d ReL.U
8 3x3 conv2d ReLU
1/3 3x3 conv2d RelLU
Output TG-rep & HM-rep: 1x81x81  RG-rep: 3x6x6




Real-World Data Capturing Configuration
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Data Collection
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Synthetic <))
& pyroomacoustics

Real-World

Dataset Split Excerpts # of Srcs | Samples
train-S classical-funk 1 or?2 100000
validate-S classical-funk 1 or2 5000
Synthetic test-S0 classical-funk 1 or 2 5000
test-S1 classical-funk 3 2500
test-S2 jazz Tor2 5000
train-A classical-funk 1or2 100000
Real world with validate-A | classical-funk 1 or2 5000
Augmentation test-A0 class¥cal-funk 1 or 2 5000
test-Al classical-funk 3 2500
test-A2 jazz lLor2 5000
test-R0O classical-funk Tor2 600
Real world test-R1 classical-funk 3 300
test-R2 jazz 1 or2 600




Evaluation Metrics

Output : List of sound source locations; Keypoints (x, V)

Predicted Keypoints (PK) are paired to Groundtruth Keypoints (GK), if they are closer than
the chosen resolution threshold.

X

# n

8

res

8 Groundtruths
$38 Predictions
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True positive
False positive O

False negative X

X
@)

Precision

> Recall

F1-Score

TP
TP + FP
TP
TP + FN
2 x precision x recall
precision + recall

Additional metric: Root Mean Square Error (RMSE) between TP



Results : Output Representation Comparison

Train and Test (test-S0) on synthetic dataset

Resolution 0.3 m Resolution 1.0 m

Output rep. Pre (1) Rec (1) F1(7) RMSE (|) Pre(1) Rec(1) F1(1) RMSE(])
Tight Grid 0.38 0.87 0.53 0.15 0.40 0.92 0.56 0.23
Heat Map 0.94 0.88 0.90 0.10 0.99 0.93 0.96 0.15

Refined Grid 0.91 0.87 0.89 0.10 0.98 0.94 0.96 0.17

» Tight grid gives competitive recall, but poor precision.
» Heat map and Refined grid outperform Tight grid on large margin.
* Fine (0.3 m) - Coarse (1.0 m) : increase F1-score, but higher RMSE.



Results : Synthetic, Augmented and Real World Data
and Generalization on Musical Genres

Train with Classical & Funk and Test with Classical & Funk and Jazz dataset.

Heat map representation; Array Encoder + Pair-Wise Arch.; Metric Resolution 1.0 m

Classical & Funk

Dataset F1 (1) RMSE (]) F1 (1) RMSE (])
Synthetic 0.96 0.15 0.97 0.13

Real World with
Augmentation 0.80 0.24 0.68 0.37

Real World 0.67 0.33 0.68 0.39

= Performance drop from synthetic to real world dataset; lack of data diversity.

= Good generalization on musical genres can be observed in synthetic data.
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Results : Generalization on Sound Source Number

Train with 1 or 2 sources and Test with 1, 2 and 3 sound source dataset.

Heat map representation; Array Encoder + Pair-Wise Arch.; Metric Resolution 1.0 m

1 sound source 2 sound sources | 3 sound sources

Dataset F1(7) RMSE (]) F1 (1) RMSE (]) F1(1) RMSE (])
Synthetic 0.99 0.08 0.93 0.18 0.77 0.22

Real World with
Augmentation

Real World 0.85 0.26 0.54 0.40 0.46 0.42

0.88 0.22 0.76 0.25 0.62 0.27

= Good generalization on the number of sound source can be observed in all dataset.



