Learning Multiple Sound Source 2D Localization

Guillaume Le Moing^{1,2}, Phongtharin Vinayavekhin¹, Tadanobu Inoue¹, Jayakorn Vongkulbhisal¹, Asim Munawar¹, Ryuki Tachibana¹, and Don Joven Agravante¹

¹IBM Research, Tokyo, Japan

²MINES ParisTech - PSL Research University, Paris, France; work performed during internship at IBM Research Tokyo

Introduction

Sound Source Localization

3 Image from Wikimedia commons: https://commons.wikimedia.org/wiki/File:What is stereophonic effect.png#filelinks

Application Areas

Healthcare, Speech Enhancement, Human-Robot Interaction etc.

Smart Speakers and other IoT devices

Social Robot (kismet, jibo)

Problem Definition

Multiple Sound Source 2D Localization

Given:

- Sound from two or more microphone arrays
- Multiple sound sources

Results:

 2D coordinates in an horizontal plane (x,y) for all sound sources.

Classical Methods on 2D Localization

Combining Direction of Arrivals (DOAs) to obtain 2D position - Association ambiguity problem [5, 6]

[5] Wing-Kin et al., "Tracking an unknown time-varying number of speakers using tdoa measurements: a random finite set approach," IEEE Transactions on Signal Processing (2006).

[6] Alexandridis and Mouchtaris, "Multiple sound source location estimation in wireless acoustic sensor networks using doa estimates: The data-association problem," IEEE/ACM Trans. Audio, Speech and Lang. Proc. (2018).

Our Approach

Data-driven based approach; specifically *deep-learning*.

 \checkmark Solve association ambiguity implicitly

- \checkmark Map sound features directly to positions
- \checkmark Adapt to difficult acoustic conditions

- X Need data to train
- X Data specific to a microphone configuration

Proposed Method

Learning Multiple Sound Source 2D Localization

Input selection Neural Network Architectures Output Representation Loss function

Post Processing

Input Selection and Neural Network Architecture

Proposed Neural Network Architecture

Array-Encoder

- Learn features with-in same mic-array..
- Shared data between multiple encoders.

Pair-wise Feature

• Learn features from every mic pairs.

Help network to generalize better

Output Representation and Loss Function

Representing 2D coordinates (x, y) for multiple sound sources.

Representation

- M x N grid
- Active/Inactive cell

Loss Function

Binary Cross Entropy (BCE)

Issue: a detailed grid (M and N) is required for accurate localization

 \rightarrow difficult to train due to an imbalance of # of active/inactive cells.

Proposed Output Representation

Representation

- M x N grid
- Probability distribution

Loss Function

Mean Squared Error (MSE)

Representation

- M x N grid
- Active/Inactive cell + Relative Location

Loss Function

BCE + MSE

Post Processing : Keypoint Retrieval

Converting Output Representation \rightarrow Sound Source Locations (x, y); Keypoints

Tight grid and Refined grid

- Non-maximum suppression (NMS) and Thresholding

Heat map

Experiment

Experimental Setup

Open space 6x6 meters

One to three sound sources

- Musical excerpts (Classical & Funk, Jazz)

Recording using two linear microphone arrays

Data Collection

Dataset	Split	Excerpts	# of Srcs	Samples
Synthetic	train-S	classical-funk	1 or 2	100000
	validate-S	classical-funk	1 or 2	5000
	test-S0	classical-funk	1 or 2	5000
	test-S1	classical-funk	3	2500
	test-S2	jazz	1 or 2	5000

	train-A	classical-funk	1 or 2	100000
Real world with	validate-A	classical-funk	1 or 2	5000
Augmentation	test-A0	classical-funk	1 or 2	5000
Augmentation	test-A1	classical-funk	3	2500
	test-A2	jazz	1 or 2	5000
Real world	test-R0	classical-funk	1 or 2	600
	test-R1	classical-funk	3	300
	test-R2	jazz	1 or 2	600

LESS data in Real-World

Results : Output Representation Comparison

 $GOAL \rightarrow$ Which output representation perform best?

	Resolution 0.3 m						
Output rep.	Pre (↑)	Rec (↑)	F1 (↑)	RMSE (↓)			
Tight Grid	0.38	0.87	0.53	0.15			
Heat Map	0.94	0.88	0.90	0.10			
Refined Grid	0.91	0.87	0.89	0.10			

Train and Test (test-S0) on synthetic dataset

- <u>Tight grid</u> gives competitive recall, but poor precision.
- Heat map and Refined grid outperform Tight grid on large margin.

Results : Architecture Design Comparison

GOAL \rightarrow Easier to generalize with proposed architecture improvement?

	Trai	nA0	10% of	TrainA0
DNN Arch.	F1 (↑)	RMSE (↓)	F1 (↑)	RMSE (↓)
Single Encoder	0.61 🥂	0.14	0.48	0.16
Array Encoder + Pair-Wise	0.68	0.13	0.63	0.15

Train and Test (test-A0) on real-world with augmentation dataset; Heat map; Resolution 0.3 m

- Lesser training data \rightarrow Larger performance gap.
- Proposed architecture requires less data to train.

Train with 1 or 2 sources and Test with 3 sound sources dataset.

• Generalization on the number of sound source can be observed.

Train with Classical & Funk and Test with Jazz dataset.

<u>Good Generalization</u> on musical genres can be observed in <u>synthetic data</u>.

Comparison between synthetic and real world dataset

Performance drop due to the lack of data diversity for training.

Conclusion

Proposed method to learn multiple sound source 2D localization.

- Encoding-decoding network architecture with two improvements.
- Two novel output representations.
- Extensive experiments both in synthetic and real-world data.

Future Direction : Improving result in real-world experiment.

- Use simulation to generate a large amount of labeled data.
- Train model so that the knowledge is transferrable.

Thank you for your kind attention. Question & Answer

Appendix

Multiple sound source 2D localization

Results on synthetic data on heatmap representation

Sim-to-Real Gap in Sound

Simulation

Possible causes for the gap

- Wave propagation approx.
- Reverberation
- Ambient noise

Reality

Sim-to-Real Gap in Sound - spectrum

Simulation

Reality

Architecture details

TABLE II: Deep neural network detailed architecture

	Block	Filters	Kernel	Conv type	Norm	Activation				
	Input		Spectral fe	atures (one an	rray): 8x	9x256				
	Dair wise		Pairs of microphones (one array): 24x9x256							
	faiture		Reshape:	$24x9x256 \rightarrow$	9x1x24	x256				
	extraction	8	2x7	conv2d	bn2d	LeakyReLU				
	extraction		Reshape:	9x8x12x256	\rightarrow 96x9	x256				
		128	1x5	conv2d	bn2d	LeakyReLU	*5			
		64	1x3	conv2d		LeakyReLU				
	Encoder	32	1x3	conv2d		LeakyReLU				
		16	9x4	conv2d		LeakyReLU				
		Reshape: $16x1x32 \rightarrow 512x1x1$								
		256	3x3	dconv2d	bn2d	ReLU				
		128	3x3 / 2x2	dconv2d	bn2d	ReLU				
		64	3x3	dconv2d	bn2d	ReLU				
	Decoder	32	3x3	dconv2d	bn2d	ReLU				
		16	3x3	conv2d		ReLU				
		8	3x3	conv2d		ReLU				
		1/3	3x3	conv2d		ReLU				
	Output	Т	G-rep & HM	-rep: 1x81x81	RG-r	ep: 3x6x6				

Real-World Data Capturing Configuration

Fig. 2: Environment Layout Configuration

Data Collection

Dataset	Split	Excerpts	# of Srcs	Samples
Synthetic	train-S	classical-funk	1 or 2	100000
	validate-S	classical-funk	1 or 2	5000
	test-S0	classical-funk	1 or 2	5000
	test-S1	classical-funk	3	2500
	test-S2	jazz	1 or 2	5000

in the			
2 -		: El	
200	-		>

Pool world with	train-A	classical-funk	1 or 2	100000
	validate-A	classical-funk	1 or 2	5000
Augmentation	test-A0	classical-funk	1 or 2	5000
Augmentation	test-A1	classical-funk	3	2500
	test-A2	jazz	1 or 2	5000
Real world	test-R0	classical-funk	1 or 2	600
	test-R1	classical-funk	3	300
	test-R2	jazz	1 or 2	600

Output : List of sound source locations; Keypoints (x, y)

Predicted Keypoints (PK) are paired to Groundtruth Keypoints (GK), if they are closer than the chosen resolution threshold.

Additional metric: **Root Mean Square Error** (RMSE) between TP

 \mathbf{X}

S Groundtruths Predictions

Results : Output Representation Comparison

Train and Test (test-S0) on synthetic dataset

	Resolution 0.3 m				Resolution 1.0 m			
Output rep.	Pre (↑)	Rec (↑)	F1 (↑)	RMSE (↓)	Pre (↑)	Rec (↑)	F1 (↑)	RMSE (↓)
Tight Grid	0.38	0.87	0.53	0.15	0.40	0.92	0.56	0.23
Heat Map	0.94	0.88	0.90	0.10	0.99	0.93	0.96	0.15
Refined Grid	0.91	0.87	0.89	0.10	0.98	0.94	0.96	0.17

- Tight grid gives competitive recall, but poor precision.
- Heat map and Refined grid outperform Tight grid on large margin.
- Fine (0.3 m) \rightarrow Coarse (1.0 m) : increase F1-score, but higher RMSE.

Results : Synthetic, Augmented and Real World Data and Generalization on Musical Genres

Train with Classical & Funk and Test with Classical & Funk and Jazz dataset.

Heat map representation; Array Encoder + Pair-Wise Arch.; Metric Resolution 1.0 m

	Classica	l & Funk	Ja	ZZ
Dataset	F1 (↑)	RMSE (↓)	F1 (↑)	RMSE (↓)
Synthetic	0.96	0.15	0.97	0.13
R eal World with Augmentation	0.80	0.24	0.68	0.37
Real World	0.67	0.33	0.68	0.39

- Performance drop from synthetic to real world dataset; lack of data diversity.
- Good generalization on musical genres can be observed in synthetic data.

Results : Generalization on Sound Source Number

Train with 1 or 2 sources and Test with 1, 2 and 3 sound source dataset.

Heat map representation; Array Encoder + Pair-Wise Arch.; Metric Resolution 1.0 m

	1 sound source		2 sound	sources	3 sound sources		
Dataset	F1 (↑)	RMSE (↓)	F1 (↑)	RMSE (↓)	F1 (↑)	RMSE (↓)	
Synthetic	0.99	0.08	0.93	0.18	0.77	0.22	
R eal World with Augmentation	0.88	0.22	0.76	0.25	0.62	0.27	
Real World	0.85	0.26	0.54	0.40	0.46	0.42	

• Good generalization on the number of sound source can be observed in all dataset.