

Super-resolution of Omnidirectional Images Using Adversarial Learning

Cagri Ozcinar*, Aakanksha Rana*, Aljosa Smolic

Problem and Objective

- Designing immersive virtual reality systems with ODIs is challenging as they require high resolution content.
- Proposing improved generative adversarial network (GAN) based model for <u>super-resolution</u> of ODIs.
- Handling artefacts obtained in the spherical observational space.

IEEE 21st International Workshop on Multimedia Signal Processing

V-SENSE

$$\frac{IM(I_{360-sr}^{x,y}, \widehat{I}_{360-sr}^{x,y})q_r^{x,y})}{\sum_{j=1}^{r}\sum_{y=1}^{H/r} q_r^{x,y}}$$

$$\frac{0.5 - (H/2r)\pi}{(H/r)}.$$

Training

- 3500 ODIs.
- Random crops of size 512×512.
- Data augmentation techniques such as rotation and flipping.
- 2hr training time with 12 GB NVIDIA Titan-X GPU on an Intel Xeon E7 core i7 machine.
- Inference time is 0.030 milliseconds for each ODI.

Quantitative Results

By a factor of 2 on 500 ODIs

Method	r = 2				
	SSIM	PSNR	WS-SSIM	WS-PSNR	
NN	0.92 ± 0.06	29.38 ± 0.04	$0.86 \pm .03$	$34.34 \pm .05$	
Bicubic	0.93 ± 0.05	30.64 ± 0.06	$0.88 \pm .04$	$35.54 \pm .07$	
SRGAN [14]	0.94 ± 0.05	32.56 ± 0.06	0.90 \pm .06	$36.35 \pm .06$	
Ours	0.95 ± 0.04	33.20 ± 0.04	$0.92\pm.04$	$37.68\pm.05$	
Ours+ 360-SS loss	0.95 ± 0.03	33.56 ± 0.04	$0.93 \pm .06$	$37.96 \pm .03$	

By a factor of 4 on 500

Method	<i>r</i> = 4				
	SSIM	PSNR	WS-SSIM	WS-PSNR	
NN	0.83 ± 0.07	25.77 ± 0.05	$0.71 \pm .03$	$32.44 \pm .05$	
Bicubic	0.85 ± 0.07	26.71 ± 0.03	0.74 \pm .04	$32.76 \pm .04$	
SRGAN [14]	0.86 ± 0.02	27.11 ± 0.09	$0.75 \pm .06$	$34.76 \pm .03$	
Ours	0.87 ± 0.05	27.19 ± 0.08	$0.76\pm.05$	$35.89\pm.05$	
Ours+ 360-SS loss	0.87 ± 0.04	27.70 ± 0.03	$0.77 \pm .08$	$36.98 \pm .06$	

By a factor of 8 on 500

Method	r = 8				
	SSIM	PSNR	WS-SSIM	WS-PSNR	
NN	0.83 ± 0.07	23.47 ± 0.05	$0.64 \pm .06$	$31.12 \pm .04$	
Bicubic	0.85 ± 0.07	24.26 ± 0.03	$0.66 \pm .07$	$31.83 \pm .06$	
SRGAN [14]	0.86 ± 0.02	25.10 ± 0.09	$0.70 \pm .06$	$33.00 \pm .07$	
Ours	0.87 ± 0.05	26.24 ± 0.08	$0.73\pm.07$	$34.68\pm.04$	
Ours + 360-SS loss	0.87 ± 0.04	26.56 ± 0.03	$0.75 \pm .06$	$35.54 \pm .06$	

Qualitative Results

a) Original

b) Bicubic

References

d) Our proposed

[14] C. Ledig, et al., "Photo-realistic single image super-resolution using a generative adversarial network," CVPR, 2017. [17] P. Isola, et al., "Image-to image translation with conditional adversarial networks," CVPR, 2017.

d) Our proposed

d) Our proposed

v-sense.scss.tcd.ie contact: ozcinarc@scss.tcd.ie and ranaaa@ scss.tcd.ie