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Abstract

A machine learning approach to detecting unknown signals in time-correlated
noise is presented. A linear dynamical system (LDS) model is trained to rep-
resent the background noise via expectation-maximization (EM). The negative
log-likelihood (NLL) of test data under the learned background noise LDS is
computed via the Kalman filter recursions, and an unknown signal is detected
if the NLL exceeds a threshold. The proposed detection scheme is derived as
a generalized likelihood ratio test (GLRT) for an unknown deterministic signal
in LDS noise. In simple additive white Gaussian noise (AWGN), the proposed
scheme reduces to an energy detector. However, experimental results on a
wireless software defined radio (SDR) testbed demonstrate that the proposed
scheme outperforms energy detection in a time-correlated noise background.

Linear Dynamical System Model for
Time-Correlated Noise

The noise background is modeled as a linear time-invariant dynamical system
(LDS). Each in-phase and quadrature (I/Q) complex baseband noise sample
nt = [nI,t, nQ,t]′ is drawn according to the following generative process:

xt+1 = Axt + wt

nt = Cxt + vt

wt ∼ N (0, Q)

vt ∼ N (0, R)

x1 ∼ N (π1, V1)

(1)

The LDS model is trained via expectation-maximization (EM).

Generalized Likelihood Ratio Test for
Unknown Signal Detection in LDS Noise

Unknown signal detection in LDS noise is formulated as a hypothesis test:

(signal absent) H0 : yt = nt

(signal present) H1 : yt = st + nt

t = 1, . . . , T

t = 1, . . . , T
(2)

where yt = [yI,t, yQ,t]′ is the received complex baseband data, st = [sI,t, sQ,t]′ is
an unknown deterministic signal, and nt is the LDS noise in (1). The generalized
likelihood ratio test (GLRT) decides H1 (signal present) if:

max
s1:T

p(y1:T ; s1:T ,H1)

p(y1:T ;H0)
> γ. (3)

The log-likelihoods ln p(y1:T ;H0) and ln p(y1:T ; s1:T ,H1) are obtained from the
Kalman filter forward recursions:

ln p(y1:T ;H0) =
T∑
t=1

lt =
T∑
t=1

ln N (yt;Cxt|t−1, St) (4)

ln p(y1:T ; s1:T ,H1) =
T∑
t=1

lt;H1
=

T∑
t=1

ln N (yt;Cxt|t−1 + st, St), (5)

where xt|t−1 is the state predicted mean and St is the prediction error covariance.
At the MLE ŝ1:T of the signal, (5) reduces to a constant w.r.t. the data y1:T :

ln max
s1:T

p(y1:T ; s1:T ,H1) =
T∑
t=1

(
−1

2
ln |St| − ln 2π

)
. (6)

Substituting (4) and (6) in (3), the GLRT decides H1 (signal present) if:

−
T∑
t=1

lt > γ′. (7)

Thus the test statistic reduces to the negative log-likelihood (NLL) of the re-
ceived data y1:T under the LDS noise model (1).

Experimental Demonstration

(a) Experimental testbed setup. The TX node
transmits a 500 kHz bandwidth QPSK signal in
the 1.2 GHz UHF band. The data collect node
receives 10 MHz RF bandwidth including the
transmit channel and downconverts it to com-
plex baseband.

(b) Spectrogram of the received complex baseband
data. The QPSK signal centered at 2MHz base-
band (faintly visible) serves as the unknown sig-
nal of interest. An LDS model is trained on the
background noise and the detection procedure is
evaluated on the test region.

Figure 1: Experimental demonstration on an over-the-air software defined radio testbed.
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Figure 2: Detector test statistics for three repetitions of the experiment with progressively decreasing
transmitted signal powers. SNR is defined relative to the total noise power across the entire receiver
bandwidth, including the dominant LO leakage noise at DC. The energy detector exhibits substantially
higher false alarm rates relative to the LDS NLL detector.
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Figure 3: Receiver operating characteristics (ROCs) for three repetitions of the experiment with progres-
sively decreasing transmitted signal powers. The performance improvement of the LDS NLL detector
relative to the energy detector becomes more pronounced as the SNR decreases.

Online LDS NLL Detection Procedure

We compute a moving average of the NLL over a sliding window of length T and detections
are declared sample-by-sample:

δt,T = − 1
T

t∑
k=t−T+1

lk

H1

≷
H0

τ t = 1, 2, . . . (8)

Probability of false alarm is related to the detection threshold τ and the window length T :

PFA = Pr
[
δt,T > τ |H0

]
= Qχ2

Tdy

2Tτ −
t∑

k=t−T+1

( ln |Sk|+ dy ln 2π)

 , (9)

where Qχ2
Tdy

is the right-tail distribution of a chi-squared random variable with Tdy dof.

Experimental Testbed

The testbed in Fig. 1a includes an Ettus Research Universal Software Radio Pe-
ripheral (USRP) B200 Software Defined Radio (SDR) acting as a transmitter
(TX) node and a second B200 SDR serving as the receiver and data collec-
tion node. The TX node transmits a Quadrature Phase Shift Keying (QPSK)
modulated signal over a 500 kHz channel bandwidth in the 1.2 GHz UHF
frequency band. The receiver node captures 10 MHz RF bandwidth including
the transmit channel and downconverts it to complex baseband, generating
I/Q data at a 10 MHz sampling rate. The I/Q data are input to our detection
framework running on the receiver node host laptop. Fig. 1b shows a short-
time Fourier transform (STFT) spectrogram of the received complex baseband
data, with the QPSK signal centered at 2 MHz baseband (faintly visible in
the spectrogram). In addition to the wideband noise background, there is a
strong narrowband, time-correlated noise component at DC primarily due to
receiver local oscillator (LO) leakage.

Results

An LDS noise model is trained (50 EM iterations) on 20,000 data samples (0.02
sec) representing the background noise in the absence of the signal of interest
taken from the training region indicated in Fig. 1b. The detection procedure
is evaluated on 3E6 data samples (0.3 sec) from the test region in Fig. 1b.
The signal of interest is present in the first 1.5E6 of these samples (0.15 sec).
We present results for three runs of the same experiment with progressively
decreasing transmitted signal powers.

The top time series plots (in red) in Figs. 2a - 2c show the moving average
NLL (8) of the test data under the LDS noise model, which serves as the
detector test statistic (window length T = 5E5 samples = 0.05 sec). Detec-
tions are declared on a per-sample basis if the moving average NLL exceeds
the threshold (detections are indicated in yellow). The resulting probability
of correct detection and false alarm are estimated as the relative frequency
of detections per sample in the ‘signal present’ and ‘signal absent’ regions, re-
spectively. The lower time series plots (in blue) in Figs. 2a - 2c show the energy
detector test statistic computed using the same window length.

Figs. 3a - 3c show the receiver operating characteristics (ROCs) generated by
varying the detection threshold, for both the LDS NLL and energy detec-
tors. The LDS NLL detector shows substantial improvement over the energy
detector in all cases, with the improvement in performance becoming more
pronounced as the SNR decreases.

Conclusion

A machine learning approach to detecting unknown signals in time-correlated
noise was presented and compared to the standard energy detector. In the
proposed approach, an LDS is used to represent the background noise. The
time-varying hidden state captures correlation in the noise process. The LDS
model parameters are learned from the data via expectation-maximization.
The negative log-likelihood of newly received data under the learned back-
ground noise LDS is monitored and an unknown signal detection is declared
if the NLL deviates significantly.

This approach was shown to reduce to the standard energy detector when the
background noise is simple AWGN. However, experimental results on an over-
the-air wireless radio testbed demonstrated that the proposed approach sub-
stantially outperforms energy detection in more complicated time-correlated
noise. Furthermore, the proposed approach retains the principal advantages
of energy detection in that it requires no prior knowledge of the characteristics
of the signal or the background noise, and is computationally efficient.


