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Introduction

Under backdoor attacks, some training samples of a
“source” class are altered by the addition of a backdoor
pattern (e.g. modification of some pixels in an image) and
assigned to another “target” class.

If learned by the DNN classifier, test backdoor patterns
will be classified to the target class with high probability.

Backdoor attacks are particularly harmful because a
successful attack does not degrade the performance of
the classifier on “clean” patterns, so they are
undetectable by ordinary validation procedures.

Moreover, all the attacker needs to launch this attack are
legitimate examples from the domain and the ability to
contribute to the training set.

For convenience, we focus here on image classification,
though backdoor attacks are also studied in other
domains like speech recognition.

Prior work on defenses [1-3] use explicit or implicit
knowledge about the attacks.

Here, we identify a challenging DP scenario for attack
detection to be the embedded scenario (as [1]), where:
* One cannot assume the training set is initially clean &
* there is no available means (time stamps, data
provenance, etc.) to identify a subset of samples
guaranteed to be free of poisoning.

Problem Set-Up

We denote the DNN classifier as f(-) : X — C, where X is
the input (image) space and C = {w,,...,wy } IS the set of
class labels.

The classifier is trained based on an available labeled
training set
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having both clean and poisoned components (unknown
to the learner):
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For simplicity, we consider a single (attack) target class.

Our Cluster Impurity (Cl) Defense

The CI defense first extracts the (t-dimensional)
penultimate layer DNN feature vector z; € R for each
training pattern X;

Then for each class, we fit these vectors using a
Gaussian mixture model (GMM) with the number of
clusters selected by BIC.

Considering w € C, denote Z,={z: ;= w }.

Note that if w = c*, Z,, also contains the feature vectors of
the backdoor patterns.

The optimal number of clusters K * €{1,2,...} is solved by
the BIC criterion:
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Compared to AC [2], CI's clustering step allows
« for possibly multiple clusters for clean patterns from a
class
 the feature vectors corresponding to the backdoor
patterns to form multiple clusters.

Cl Defense (continued)

To infer for each of the K * clusters whether it
corresponds to backdoor patterns, we develop a metric
called “cluster decision impurity measure”.

We first hard MAP-assign each training pattern from class
w to one of the K ,* components, based on the GMM's
mixture posterior.

Then we apply a blurring filter (e.g. an averaging filter)
h(-) : X — X to all the training patterns from a cluster.
Other preprocessing schemes (e.g. adding random noise
globally) will be studied.

Consider a cluster of patterns denoted by W.
« We define p € [0,1] by

p = prob(f(h(Z)) = w|f(Z) =w), VZeW.
e Then the cluster decision impurity measure for W is

S(W) = Dk ([1,0]" ||[p, 1 — p]"),

where the intuition behind this metric is as follows:

« For clean clusters, the blurrying largely produces no
decision changes.

« But for poisoned clusters, blurring changes many
decisions to the source class.

« S0 we expect higher measure for poisoned clusters
than clean clusters.

* An easily-selected threshold is then used to detect
whether backdoor patterns are embedded, with a
decision made cluster by cluster.

Experimental Set-Up

« Used CIFAR-10 dataset with 60000 color images
(32 X 32 X 3) evenly distributed in ten classes.

« The dataset is separated into a training set with 50000
Images (5000 per class) and a test set with 10000
Images.

« The victim classifier Is trained using the 50000 clean
patterns, plus a set of back- door patterns specified in
the sequel.

* For training, we use ResNet-20 and perform for 200
epochs with mini-batch size of 32, which achieves an
accuracy of 91.18% on the clean test set.

« Crafting of the Backdoor Patterns: We focus on the
challenging problem of stealthy backdoor patterns that
modify as few pixels as possible, here a single pixel (so
more challenging than the attack considered in [1]).

» The perturbed pixel is randomly selected from the non-
background region of the image and fixed for all the
backdoor patterns used for training.

Experimental Results

Table 2. (TPR, FPR) for the range of perturbation sizes for
the multiple-source attack scenario.

Pert. Size SS AC Cl
0.15: (0.417, 0.5) | (0.570, 0.061) | (0.976, 0.003)
0.20: (0.436, 0.5) | (0.579, 0.041) | (0.985, 0.001)
0.25: (0.496, 0.5) | (0.673, 0.100) | (0.991, 0.001)
0.30: (0.428, 0.5) | (0.867,0.001) | (0.995, 0.005)
0.35: (0.588, 0.5) | (0.829, 0.001) | (0.992, 0.003)
0.40: (0.391, 0.5) | (0.636, 0.036) | (0.984, 0.001)

Fig. 1. Low-resolution backdoor image of an airplane (left)
with asingle pixel perturbed from the clean image (right).
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Fig. 2. Attack success rates and accuracies on the clean test
set for a range of perturbation sizes for the single-source at-
tack scenario.
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Fig. 5. Attack success rates and accuracies on the clean test
set for a range of perturbation sizes for the multiple-source
attack scenario.
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Fig. 6. Attack success rate and accuracy on clean test set of
the retrained neural networks for the three defenses for the
multiple-source attack scenario.

Conclusions

Faced with largely imperceptible backdoor attacks which
would be highly successful in the absence of a defense, CI
showed clearly better detection ability than the other
defenses.

Paper also considers the case of a single-source attack.
Backdoor patterns applied in test-time may differ from
those used for poisoning the training set. Backdoor
patterns may also be optimized to achieve a better attack
success rate and human-imperceptibility.

A novel defense for the post-training scenario is proposed
in [5].

References

(SS) B. Tran, J. LI, and A. Madry, “Spectral signatures in backdoor
attacks,” in Proc. NIPS, 2018.

(AC) B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards,
T. Lee, I. Malloy, and B. Srivastava, “Detecting backdoor attacks
on deep neural networks by activation clustering,’
https://arxiv.org/abs/1811.03728, 2018.

(FP) K. Liu, B. Doan-Gavitt, and S. Garg, “Fine-Pruning: Defending
Against Backdoor Attacks on Deep Neural Networks,” 2018.

D.J. Miller, Y. Wang, and G. Kesidis, “Anomaly Detection of Attacks
(ADA) on DNN Classifiers at Test Time,” Neural Computation,
2019; shorter version in Proc. IEEE MLSP, 2018.

Z. Xiang, D.J. Miller and G. Kesidis. Revealing Backdoors, Post-
Training, in DNN Classifiers via Novel Inference on Optimized
Perturbations Inducing Group Misclassification,
http://arxig.org/abs/1908.10498, Aug. 2019.




