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A BENCHMARK STUDY OF BACKDOOR POISONING FOR DNN CLASSIFIERS

AND A NOVEL DEFENSE

Introduction

• Under backdoor attacks, some training samples of a 

“source” class are  altered by the addition of a backdoor 

pattern (e.g. modification of some pixels in an image) and 

assigned to another “target” class.

• If learned by the DNN classifier, test backdoor patterns 

will be classified to the target class with high probability.

• Backdoor attacks are particularly harmful because a 

successful attack does not degrade the performance of 

the classifier on “clean” patterns, so they are 

undetectable by ordinary validation procedures. 

• Moreover, all the attacker needs to launch this attack are 

legitimate examples from the domain and the ability to 

contribute to the training set. 

• For convenience, we focus here on image classification, 

though backdoor attacks are also studied in other 

domains like speech recognition. 

• Prior work on defenses [1-3] use explicit or implicit 

knowledge about the attacks. 

• Here, we identify a challenging DP scenario for attack 

detection to be the embedded scenario (as [1]), where:

• one cannot assume the training set is initially clean &

• there is no available means (time stamps, data 

provenance, etc.) to identify a subset of samples 

guaranteed to be free of poisoning. 

Problem Set-Up

• We denote the DNN classifier as f(·) : X → C, where X is 

the input (image) space and C = {ω1,...,ωK } is the set of 

class labels. 

• The classifier is trained based on an available labeled 

training set 

• having both clean and poisoned components (unknown 

to the learner):

• For simplicity, we consider a single (attack) target class.

Our Cluster Impurity (CI) Defense

• The CI defense first extracts the (t-dimensional) 

penultimate layer DNN feature vector zi ∈ Rt for each 

training pattern 𝑥𝑖

• Then for each class, we fit these vectors using a 

Gaussian mixture model (GMM) with the number of 

clusters selected by BIC.

• Considering ω ∈ C, denote Zω = { zi : ǁ𝑐𝑖= ω }. 

• Note that if ω = c∗, Zω also contains the feature vectors of 

the backdoor patterns. 

• The optimal number of clusters Kω
∗ ∈{1,2,...} is solved by 

the BIC criterion: 

• Compared to AC [2], CI’s clustering step allows

• for possibly multiple clusters for clean patterns from a 

class

• the feature vectors corresponding to the backdoor 

patterns to form multiple clusters. 

CI Defense (continued)

• To infer for each of the Kω
∗ clusters whether it 

corresponds to backdoor patterns, we develop a metric 

called “cluster decision impurity measure”. 

• We first hard MAP-assign each training pattern from class 

ω to one of the Kω
∗ components,  based on the GMM’s 

mixture posterior. 

• Then we apply a blurring filter (e.g. an averaging filter)     

h(·) : X → X to all the training patterns from a cluster. 

Other preprocessing schemes (e.g. adding random noise 

globally) will be studied.

• Consider a cluster of patterns denoted by W. 

• We define p ∈ [0,1] by 

• Then the cluster decision impurity measure for W is 

• where the intuition behind this metric is as follows: 

• For clean clusters, the blurrying largely produces no 

decision changes. 

• But for poisoned clusters, blurring changes many 

decisions to the source class. 

• So we expect higher measure for poisoned clusters 

than clean clusters. 

• An easily-selected threshold is then used to detect 

whether backdoor patterns are embedded, with a 

decision made cluster by cluster. 

Experimental Set-Up

• Used CIFAR-10 dataset with 60000 color images 

(32×32×3) evenly distributed in ten classes. 

• The dataset is separated into a training set with 50000 

images (5000 per class) and a test set with 10000 

images. 

• The victim classifier is trained using the 50000 clean 

patterns, plus a set of back- door patterns specified in 

the sequel. 

• For training, we use ResNet-20 and perform for 200 

epochs with mini-batch size of 32, which achieves an 

accuracy of 91.18% on the clean test set. 

• Crafting of the Backdoor Patterns: We focus on the 

challenging problem of stealthy backdoor patterns that 

modify as few pixels as possible, here a single pixel (so 

more challenging than the attack considered in [1]). 

• The perturbed pixel is randomly selected from the non-

background region of the image and fixed for all the 

backdoor patterns used for training. 

Experimental Results

Fig. 1. Low-resolution backdoor image of an airplane (left)

with asingle pixel perturbed from the clean image (right).

patterns is fixed at 1000 and the perturbation size (added to

each (R, G, B) channel) is varied. Without any defense, the

accuracies on the clean test patterns and the attack success

rates under attack with different perturbation sizes are shown

in Figure 2. Here, the attack success rate is the fraction of

backdoor test patterns (those not used during training) that

are classified to the target class. For all the perturbation sizes

tested, the classification accuracy on the clean test patterns is

not appreciably degraded, and the attack success rate is quite

high, even for the weakest (0.15) perturbation.

The performances of the defenses, in the presence of the

attacks, are compared in two steps. First, we record the true

positive rate (TPR) and the false positive rate (FPR) for each

defense (assessing how accurately it removes training sam-

ples as putative backdoors) and compare the detection effec-

tiveness. Second, with the detected patterns removed and

the classifier retrained, the ultimate performance is assessed

based on the clean test set accuracy and the backdoor attack

success rate of the retrained classifier.

SS, aspointed out in Section 2, relieson knowledgeof the

number of backdoor training samples, unlikely to be known

in practice. Moreover, no practical way is provided to explic-

itly infer whether a class is backdoor-poisoned or not. For

convenience of evaluation, we fixed the FPR of SS to 0.5 by

applying the same detection threshold to all classes and then

evaluated the TPR. Note that FPR = 0.5 means half of the

unpoisoned training patterns will be falsely detected and re-

moved. This very high FPR is necessary in order for SS to

achievemeaningful TPR (detecting someof thebackdoor pat-

terns) in our single-pixel-perturbation attack scenario.Regarding AC, the ‘ retraining’ method for deciding which

of the two clusters obtained by K-means should be discarded

is impractical when the number of classes is large. Without

explicitly implementing theretraining method, wepresent es-

sentially “best possible” results for AC by only applying it to

the class that has actually been attacked and by choosing for

removal the cluster from this class that actually possesses the

most poisoned patterns. That is, we assume there are zero

false positive detections associated with unattacked classes

(even though this ishighly optimistic) and that AC unfailingly

picks the correct cluster to detect and remove.

The CI defense requires the specification of the type and

sizeof theblurring filter, and thethreshold on thecluster deci-

Fig. 2. Attack success rates and accuracies on the clean test

set for a range of perturbation sizes for the single-source at-

tack scenario.

sion impurity measure to trigger thealarm and removethede-

tected cluster. Sincetheresolution of theimagesbeing experi-

mented is low, weusearelatively small 2⇥2 averaging filter.4

To decide the detection threshold, we first show an example

histogram in Figure 3 for theclass decision impurity measure

for the 18 clusters (across all originating classes) selected us-

ing BIC, with perturbation size 0.25 (similar histograms are

obtained for other perturbation sizes). Note the clear, large

gap between low and high impurity clusters (with the single,

high impurity cluster from the attacked class). Thus, we set

the impurity threshold at 0.2 for the CI approach in all our

experiments. Here we state without showing the histograms

that the same threshold works perfectly if a 3⇥ 3 averaging

filter is used instead.Table 1 shows the (TPR, FPR) pairs of the three detec-

tion approaches for each perturbation size. In general, CI

achieves much higher TPR (greater than 0.96) with very low

FPR (lower than 0.005) than theother two approaches. Under

the most preferred assumptions, AC achieves relatively good

TPR for large perturbation size. However, the TPR reduces

clearly as the perturbation is made smaller. The TPR of the

SS approach shares the same trend, but it is apparently not

comparable to the other two approaches. As for the FPR, we

only analyze for theAC and CI approaches since it isfixed for

the SS approach. Although the FPRs of the AC approach are

not high, this is optimistic since we only consider the class

being attacked. Since we have assumed that only one cluster

from this class is removed, a 0.036 FPR means that roughly

1800 out of the 5000 clean patterns from the attacked class

are falsely detected and discarded. This will beamplified and

result in much higher overall FPR if AC is applied separately

to each class, not just the (optimistically) known class under

4Alternatively, we could seek to remove the backdoor pattern by glob-

ally adding noise to the image, an approach which is invariant to the spatial

support of thebackdoor patterns.
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Fig. 3. Histogram of theclassdecision impurity measureover

the18 clustersestimated using BIC for perturbation size0.25.

attack. In comparison, the FPR of the CI approach is truly

low as no more than 5% of clean patterns are removed from

any single class, and with all classes considered.

Table 1. (TPR, FPR) for the range of perturbation sizes for

the single-source attack scenario.

Pert. Size SS AC CI

0.15: (0.443, 0.5) (0.622, 0.057) (0.962, 0.002)

0.20: (0.483, 0.5) (0.691, 0.040) (0.980, 0.003)

0.25: (0.474, 0.5) (0.763, 0.040) (0.979, 0.003)

0.30: (0.558, 0.5) (0.741, 0.037) (0.976, 0.003)

0.35: (0.666, 0.5) (0.851, 0.034) (0.989, 0.002)

0.40: (0.616, 0.5) (0.847, 0.036) (0.985, 0.004)

In Figure 4, we show the attack success rate and accuracy

on the clean test set of the retrained neural networks for the

three defenses. The CI approach reduces the attack success

rate to a negligible level, and the clean test set accuracy is

not degraded at all. The AC approach is relatively successful ,

but its performance at low perturbation size is poor. The SS

approach clearly fails to defeat the attack. Moreover, there

is some degradation in clean test set accuracy even though

training patterns are abundant for CIFAR-10 (5000 training

patterns per class). If weallow an even higher FPR to achieve

a better TPR for SS, the retrained neural network will suffer

even more test set accuracy degradation.
Multiple-Sour ce Backdoor Attack: Now we consider a

multiple-source attack scenario where the backdoor patterns

are crafted using the clean patterns from the ‘airplane’ , ‘au-

tomobile’ and ‘horse’ categories and still labeled as ‘bird’ .

The number of backdoor patterns from each source class is

fixed to 1000. Using the same training settings, we show the

accuracies on the clean test patterns and the attack success

Fig. 4. Attack success rate and accuracy on clean test set of

the retrained neural networks for the three defenses for the

single-source attack scenario.

rates under attacks with different perturbation sizes in Figure

5. Note that the attack success rates are obtained based on

1000 backdoor-embedded test patterns from each of the three

source classes.

Table 2. (TPR, FPR) for the range of perturbation sizes for

the multiple-source attack scenario.

Pert. Size SS AC CI

0.15: (0.417, 0.5) (0.570, 0.061) (0.976, 0.003)

0.20: (0.436, 0.5) (0.579, 0.041) (0.985, 0.001)

0.25: (0.496, 0.5) (0.673, 0.100) (0.991, 0.001)

0.30: (0.428, 0.5) (0.867, 0.001) (0.995, 0.005)

0.35: (0.588, 0.5) (0.829, 0.001) (0.992, 0.003)

0.40: (0.391, 0.5) (0.636, 0.036) (0.984, 0.001)

In Table 2, we show the (TPR, FPR) pairs, and in Figure

6, we show the attack success rate and accuracy on clean test

set of the retrained neural networks for the three defenses for

the multiple-source attack scenario. In general, the resulting

(TPR, FPR) pairs are similar to those for the single-source

scenario. After retraining, the CI defense still keeps a close-

to-zero attack success rate and an unaffected clean test set

accuracy. The SS defense fails again with degradation in the

clean test set accuracy. The AC defense is successful at per-

turbation size 0.3, but fails for other perturbation sizes. Note

that for perturbation size0.25, theAC defense indeed disables

the backdoor trigger, but it also causes a nearly ten percent

degradation in the clean test accuracy.

Discussion: The clustering in CI yields pure backdoor

clusters most of the time. One reason may be its use of all

the penultimate layer features — some “minor component”

features may contain important information for discriminat-

ing clean from poisoned patterns. Also, using BIC to select

the number of clusters for each class instead of performing

Fig. 5. Attack success rates and accuracies on the clean test

set for a range of perturbation sizes for the multiple-source

attack scenario.

K-means (with K = 2) allows multi-modality for clean pat-

terns and multi-sourcing for backdoor patterns. As for the

inference method, CI uses an effective impurity metric with

low computational cost — no heavy re-training of neural net-

works is required.

3. CONCLUSIONS

We studied backdoor data poisoning defenses on DNNs. We

reviewed existing works and proposed the novel CI defense.

A series of benchmark experiments on images were con-

ducted to compare the performance of the defenses under a

challenging embedded backdoor scenario. Faced with largely

imperceptible single-pixel backdoor attacks which would be

highly successful in the absence of a defense, CI showed

clearly better detection ability than the other defenses.

Beyond what has been demonstrated in this paper, we ob-

served in relevant experiments that (test) backdoor patterns

are locally spatially invariant. They need not be in the same

fixed location. Also, backdoor patterns with properly opti-

mized location might facilitate the attack and its evasiveness;

hence defenses should be further improved correspondingly.

Another interesting observation was that a backdoor pattern

that successfully induces a targeted misclassification during

testing need not be the same as the backdoor pattern used in

training. For thesingle-pixel perturbation attack, test samples

crafted by perturbing anearby pixel with an “opposite pertur-

bation” caused successful attacks with very high probabil ity.

Hence another future research direction is to study and inter-

pret the features DNNs glean from backdoor patterns.

Fig. 6. Attack success rate and accuracy on clean test set of

the retrained neural networks for the three defenses for the

multiple-source attack scenario.
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Conclusions

• Faced with largely imperceptible backdoor attacks which 

would be highly successful in the absence of a defense, CI 

showed clearly better detection ability than the other 

defenses. 

• Paper also considers the case of a single-source attack.

• Backdoor patterns applied in test-time may differ from 

those used for poisoning the training set. Backdoor 

patterns may also be optimized to achieve a better attack 

success rate and human-imperceptibility.

• A novel defense for the post-training scenario is proposed 

in [5].


