VAE/WGAN-BASED IMAGE REPRESENTATION LEARNING FOR POSE-PRESERVING SEAMLESS IDENTITY REPLACEMENT IN FACIAL IMAGES

Hiroki Kawai, Jiawei Chen, Janusz Konrad, and Prakash Ishwar

{hirokik, garychen, jkonrad, pi} @bu.edu

Department of Electrical and Computer Engineering, Boston Univeristy, Boston, MA, USA

Motivation	Proposed Methodology for Head Pose Estimation	Experimental Results	
 Smartroom of the future: could improve energy efficiency, health outcomes and productivity by 	(1) PPRL-VGAN for headpose estimation:	Qualitative evaluation: UPNA Head Pose Database (Cropped images of centered faces resized to 64x64 pixels)	
recognizing activities of occupants	Target Identity $c(y_s)$		
 Standard approach: video cameras 	Generator G		

• **Problem:** privacy concerns

ECE

• **Proposed solution**: seamlessly replace occupant's appearance while preserving other useful information like expression, pose, etc.

- State of the art: PPRL-VGAN [1] deep neural network for identity replacement that preserves the facial expression of an individual
- Contributions:

(2) Inception modules: contain 3 convolutional-layer branches with different filter sizes; branch outputs are concatenated

(3) Improved training method:

 Wasserstein GAN (WGAN): leverages Earth-Mover distance (instead of Jensen-Shannon divergence) via gradient penalty in discriminator loss

Quantitative evaluation: Privacy protection evaluated by training another neural network to predict identity under 3 attack scenarios :

Attack Scenario	Identification (%)		Headpose MAE (°)	
Method	Ours	PPRL- VGAN	Ours	PPRL- VGAN
Privacy Unconstrained	99.97		0.69	
Training: Original Dataset Test: Synthesized Images	10.23	9.92	2.25	3.57
Training: Synthesized Images Test: Synthesized Images	23.31	21.64	1.81	2.90
Training: Latent Vectors Test: Latent Vectors	21.33	23.71	2.21	2.76

- PPRL-VGAN framework to preserve headpose
- Inception modules to improve image quality
- WGAN + modified cost function (image reconstruction cost) to improve training stability and image quality

PPRL-VGAN

Architecture of PPRL-VGAN [1]

- Image reconstruction cost: compares input image and generated image to improve image quality
- Generator Loss: encourages synthesis of realistic images with new identity and original headpose

$$\begin{aligned} U_G = & E\left[-D^1_{\omega}(G(\mathbf{x}, \mathbf{c}(y_s)))\right] + E\left[-\log(D^2_{y_s}(G(\mathbf{x}, \mathbf{c}(y_s))))\right] \\ &+ E\left[\sum_{i=1}^3 |y_{pose}^i - D^3_i(G(\mathbf{x}, \mathbf{c}(y_s)))|\right] + E\left[||G(\mathbf{x}, \mathbf{c}(y_{id})) - \mathbf{x}||_2^2\right] \\ &+ D_{KL}(q(\mathbf{z}|\mathbf{x})||r(\mathbf{z})) \end{aligned}$$

 Discriminator Loss: encourages accurate prediction of identity, expression and real vs synthetic detection

$$L_D = E\left[-D^1_{\omega}(\mathbf{x}) + D^1_{\omega}(G(\mathbf{x}, \mathbf{c}(y_s)))\right] + E\left[-\log(D^2_{y_{id}}(\mathbf{x}))\right]$$
$$+ E\left[\sum_{i=1}^{3} |u^i| - D^3_i(\mathbf{x})|\right] + E\left[(||\nabla D^1(\mathbf{x})||_2 - 1)^2\right]$$

Identity/head-pose morphing: The generative ability of our model is evaluated by identity and head-pose morphing:

Identity morphing:

Input

Head-pose morphing:

Conclusions

Generator: based on Variational Autoencoder:

- encoder converts input image into a latent vector representation
- decoder synthesizes a new realistic-looking image with specified identity from a latent vector

Discriminator: 3 prediction objectives D¹ - Is image **real or fake**?

D² - Identity

D³ - Facial expression

[1] J. Chen, J. Konrad, and P. Ishwar, "VGAN-based image representation learning for privacy-preserving facial expression recognition," CVPR COPS Workshp 2018.

- Training alternates between minimizing L_G and maximizing L_D
- These loss functions are minimized via Adam optimization

 Our method synthesizes realistic face images with a desired identity and improved image quality compared to a state-of-the-art method.

- We achieve performance competitive with a state-of-the-art method for learning an identity-invariant image representation.
- Our model can be applied to other image tasks such as pose or face morphing.

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research and support from the BU Undergraduate Research Opportunities Program