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e State of the art: PPRL-VGAN [1] deep neural .
. . (3) Improved training method:
network for identity replacement that preserves Training: Original Dataset
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e Wasserstein GAN (WGAN): leverages Earth-Mover
distance (instead of Jensen-Shannon divergence)
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o PPRL-VGAN framework to preserve headpose Test: Synthesized Images
¢ Image reconstruction cost: compares input image
and generated image to improve image quality

o Inception modules to improve image quality
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o WGAN + modified cost function (image
reconstruction cost) to improve training stability
and image quality

e Generator Loss: encourages synthesis of realistic
images with new identity and original headpose

Identity/head-pose morphing: The generative
ability of our model is evaluated by identity and
head-pose morphing:
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Architecture of PPRL-VGAN [1] Conclusions

Generator: based on Variational Autoencoder:
® encoder converts input image into a latent

vector representation D :WGAN cost D:Identity cost D:Head-pose cost

e decoder synthesizes a new realistic-looking
image with specified identity from a latent vector D:Image Reconstruction| [:Regularization D:Gradient penalty

Discriminator: 3 prediction objectives
D! - Is image real or fake?

e Our method synthesizes realistic face images
with a desired identity and improved image
qguality compared to a state-of-the-art method.

e \We achieve performance competitive with a
state-of-the-art method for learning an
identity-invariant image representation.

D? - Identity  Training alternates between minimizing L . and
maximizing L

e Our model can be applied to other image tasks

3 : : such as pose or face morphing.
D° - Facial expression

e These loss functions are minimized via Adam
optimization
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