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We introduced a control variate to reduce the sampling variance of the importance-weighted risk es�mator. With its inclusion, the importance-weighted risk 
es�mator is more robust large weight variance. Consequently, during K-fold cross-valida�on, it selects be�er hyperparameters than the uncontrolled 
importance-weighted risk es�mator. The effect is independent of the weight es�mator employed (see paper for experiments and results).

Cross-valida�on under sample selec�on bias can, in principle, be done by importance-weigh�ng the empirical risk. 
However, the importance-weighted risk es�mator produces sub-op�mal hyperparameter es�mates in problem 
se�ngs where large weights arise with high probability. We study its sampling variance as a func�on of the training 
data distribu�on and introduce a control variate to increase its robustness to problema�cally large weights.

SAMPLE SELECTION BIAS
 

Sampling bias can occur spa�ally, when you collect data from one loca�on but 
expect to generalize a wider target popula�on, or temporally, when you collect 
for a short period of �me but expect to generalize to a larger horizon. As a 
consequence the training data is differently distributed than test data. Below, we 
refer to the distribu�on of the training data - collected under sampling bias - as 
the source distribu�on (pS) and the test data distribu�on as the target 
distribu�on (pT).

SAMPLING VARIANCE
 

It turns out that the importance-weights scale the sampling variance of the 
weighted es�mator. High sampling variance means inaccurate es�mates. In the 
figure below, we plot the sampling variance of the oracle target risk es�mator 
(yellow) and the importance-weighted source risk es�mator (blue).

IMPORTANCE-WEIGHTED RISK
 

Under sample selec�on bias, we do not have target labels. Instead, we use the 
fact that the posteriors are equal, pS(y|x) = pT(y|x), to re-cast the target risk as 
the source risk weighted by the ra�o of data distribu�ons: 

TARGET RISK
 

We are interested in minimizing the target risk func�on, i.e. the expected loss 
with respect to the target distribu�on. This func�on is es�mated with a sample 
average over labeled target samples:

CONTROL VARIATE
 

Variance reduc�on methods employ addi�onal knowledge of an es�mator to 
reduce the sampling variance of that es�mator, and thereby produce a more 
accurate es�mate given the same sample size. We use the importance-weights 
themselves as the control variate:

We draw 10⁶ source and target data sets from these distribu�ons. For each set, 
we do 5-fold importance-weighted cross-valida�on where we train an 
importance-weighted classifier on remaining folds and evaluate the risk using the 
weighted, controlled and oracle target risk es�mators shown above. A 
regulariza�on parameter is then selected, we train the importance-weighted 
classifier on all source data with the selected parameter and evaluate its risk 
using the labeled target data. Shown below are the target risks for the three 
es�mators as a func�on of the standard devia�on of the source distribu�on (i.e. 
the severity of sampling bias).

We know the expected value of the weights, namely 1, and we also know that 
the weights are correlated to the weighted loss. If a weight rises above 1, then 
the weighted loss for that point also rises above its expected value (or falls 
below, in case of nega�ve correla�on). Subtrac�ng the weight's devia�on from 
the weighted loss, reduces the es�mator's sampling variance. The β parameter is 
es�mated separately and ensures appropriate scaling. The green line in the le�-
bo�om Figure shows the new sampling variance. Note that it grows much more 
slowly.

The do�ed lines show the performance of the risk es�mators for the top 10% 
largest weight variance data sets. We can conclude from this that, while the 
weighted risk es�mator deteriorates as the weight variance increases, the 
controlled es�mator performs at the same level. 

EXPERIMENT
 

Consider a unit 2D Gaussian for the target distribu�on and a narrower 2D 

Gaussian for the source distribu�on, with a nonlinear decision boundary 

between them. Below are shown the two class-condi�onal distribu�ons of the 

source (le�) and target (right) distribu�on, for source std. dev. of 1/√2.


