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A 3-steps Signal Decomposition implementation into 

a Blind Source Separation framework to compensate 

the baseline drift of single-molecule sensors under 

non-stationary environments:

 Iterative Multiscale Signal Compression

 Unsupervised Dynamic Drift Nodes Positioning

 Adaptive Piecewise Cubic Hermite Interpolation

IV.Conclusion & Future Work

Source having the longest propensity serve as the 

minimum compression support 𝒍𝒎𝒊𝒏,𝒊+𝟏 in the next iteration

𝒍𝒎𝒊𝒏,𝒊+𝟏 = 𝐦𝐚𝐱 𝒔𝒕𝒆𝒑𝒍𝒆𝒏𝒈𝒕𝒉 𝒇𝒊 𝒕 , 𝒍𝒎𝒊𝒏,𝒊+𝟏 ∈ 𝟏,𝑵 (3)

The compression ratio thus increases at each iteration, 

while the compression bounds are:

𝑳 𝑿𝒕 : 𝑳𝒌,𝒍𝒎𝒊𝒏,𝟏
(𝒇𝟏 𝒕 ) ≤ 𝑪𝒊≤ 𝑳 𝑿𝒕 : 𝑳𝟎 (4) (4)

𝑳 𝑿𝒕 being the average number of bits of information per 

symbol in the raw signal 𝑿𝒕, calculated using a Huffman 

coding scheme

𝑯(𝑿𝒕) ≤ 𝑳 𝑿𝒕 =σ𝒂=𝟏
𝑴 𝑪𝑾(𝒂)𝒑𝒂 ≤ 𝑯 𝑿𝒕 + 𝟏

𝑯 𝑿𝒕 = σ𝒂=𝟏
𝑴 𝒑𝒂𝒍𝒐𝒈𝟐[

𝟏

𝒑𝒂
] (5)

A shape-preserving piecewise cubic Hermite 

interpolation on each compressed trace 𝒇𝒊(𝒕)
is applied with one interpolation node 

𝑫𝒏𝒐𝒅𝒆𝒔𝒊,𝒋 per separated source 𝒔𝒊,𝒋 in each 

compressed trace, using the "pchip" Matlab®

function on the set of nodes:

𝒅𝒊 𝒕 = 𝒑𝒄𝒉𝒊𝒑(𝑫𝒏𝒐𝒅𝒆𝒔𝒊,𝒋, 𝒇𝒊 𝒕 , 𝑿𝒕) (7)

𝑫𝒏𝒐𝒅𝒆𝒔𝒊,𝒋= 𝟎, 𝟓 × 𝒔𝒕𝒆𝒑𝒍𝒆𝒏𝒈𝒕𝒉(𝒔𝒊,𝒋) (8)

The baseline drift 𝒅(𝒕) is thus inferred by a 

model selection of signal layers having 

frequencies of concept drifts between sources 

comparable to baseline oscillations rate:

𝒅 𝒕 =
𝟏

𝒎−𝟐
σ𝒊=𝟐
𝒎−𝟏𝒅𝒊(𝒕) (9)

2.3 Adaptive Model Selection of Signal Layers 

❑ The originality of MDL-AdaCHIP relies on an alternative blind source separation

method to the decomposition of non-stationary multicomponent signals based on the

minimum description length principle.

❑ Thanks to an iterative multiscale signal compression, we manage to segregate the

signal layer containing the observations corresponding to the sensed phenomenon,

from the signal layer corresponding to the sensor baseline, without any signal

prefiltering nor supervision.

❑ Finally we intend to implement the on-line version of MDL-AdaCHIP through a

compressive sensing approach.

Baseline drift modeling on a non-stationary smFET signal characterized by 

a concept drift (CD) on the number of mixed sources

Data points 

Baseline drift modeling on a non-stationary smFET signal corrupted by mixed noises (pink+ AWGN,SNR=1dB)

2.1 Multiscale Compression to Signal Decomposition: 

𝒔𝒕:     Hidden sources

𝒅𝒕:    Sensor Baseline Drift

𝜺𝒕:     White Gaussian + Flicker noises

𝑴:     Blind Mixing Matrix

𝑿𝒕:    Raw Signal 

𝑳𝒌:    Codelength of the Compressed Trace

𝑪:      Multiscale Compression Matrix

𝑪𝒊:     Compression Ratio

𝒇𝒊(𝒕): Compressed Trace

𝑫𝒏𝒐𝒅𝒆𝒔𝒊𝒋: Drift nodes

𝒅𝒊,𝒋(𝒕):        Embedded Signal Layers

III.Evaluations & Validation

Fig1: Baseline drift compensation on EMG traces from a healthy (top), myopathy (middle) and neuropathy (top) patients recordings (EMG-DB PhysioBank) , corrupted by a baseline wander with changing direction and amplitude over time       Fig2: Baseline drift removal on ECG recording (ECG-IDDB PhysioBank) The MDL-AdaCHIP is performed to highlight the embedded signal components 

through the iterative multiscale compression ratios (CR) (top). The baseline drift is then inferred thanks to a model selection of the signal layers, excluding the first and last compression levels containing the sensed molecular dynamics and the signal average intensity respectively. (middle and bottom panels)             Fig3: Comparison between the proposed MDL-AdaCHIP and a Bayesian non-

parametric approach for baseline modeling of non-stationary signals with CD in the number of sources (top) and the type of noise (bottom)                       Fig4: Performance of the baseline drift modeling given various sensor and signal parameters. Each boxplot represents the distribution of RMSE between estimated and true baseline drift for 200 traces of 5000 points.

An entropy-based signal compression cost function 𝑳𝒌
acts as a soft clustering-based source separation 

method, by assigning to each data point a source 

membership coefficient, enabling to handle mixtures of 

sources emitting both simultaneously or sequentially:

𝑳𝒌 =
𝒌

𝟐
𝐥𝐨𝐠𝑵 +

𝟏

𝟐
σ𝒋=𝟏
𝒌+𝟏 𝒍𝒐𝒈𝑵𝒋 +

𝑵

𝟐
𝒍𝒐𝒈

𝑹𝑺𝑺𝒌

𝑵
+

𝑯(𝒌,𝑿𝒕)

𝒍𝒐𝒈(𝒌+𝟏)
(1)

For a compression ratio 𝑪𝒊, the compressed trace 𝒇𝒊(𝒕) is 

obtained in (2) by minimizing the cost function 𝑳𝒌
described in (1). To do so, we scan the signal 𝑿𝒕 for 𝒌

concept drifts given a source propensity threshold of 𝒍𝒎𝒊𝒏,𝒊

𝒇𝒊 𝒕 = 𝒂𝒓𝒈𝒎𝒊𝒏(𝑳 𝒌,𝒍𝒎𝒊𝒏,𝒊
𝑿𝒕 , 𝟏 ≤ 𝒍𝒎𝒊𝒏,𝒊 ≤ 𝑵 ) (2)

2.2 Dynamic Drift Nodes Positioning   

The middle of the steplength of each separated source serves to position nodes for a 

cubic Hermite interpolating polynomial function 𝒅𝒊 𝒕 in (𝑘 + 2) intervals:

✓ We tested a large variety of baseline drift scenarios, using a multi-parametric simulated baseline drift function 𝒅𝒔𝒊𝒎(𝒕) :

𝒅𝒔𝒊𝒎 𝒕 = σ𝒊=𝟏
𝒏 𝑨𝒊𝐬𝐢𝐧(𝝎𝒊𝒕 + 𝝋𝒊) − 𝑪𝒕 +𝑫 (10)

(𝒕: the time, 𝑪: the slope of the linear component, 𝝎𝒊 and 𝝋𝒊: the frequency and phase of the 𝑛𝑡ℎ oscillating component, 𝑨𝒊 and 𝑫: coefficients allowing to modulate baseline function amplitude) 

✓ The Robustness of MDL-AdaCHIP on a wide range of real biosignals (ECG, EMG, foetal PCG, FRET) confirms its reliability to compensate the baseline drift under challenging situations.

𝒅𝒊,𝒋 𝒕 = 𝒂𝒋 + 𝒃𝒋 𝒕 − 𝒙𝒋 + 𝒄𝒋 𝒕 − 𝒙𝒋
𝟐
+ 𝒅𝒋 𝒕 − 𝒙𝒋

𝟐
𝒕 − 𝒙𝒋+𝟏 (6)

Each 𝒅𝒊,𝒋 𝒕 is the local cubic polynomial interpolating function of 𝒇𝒊 𝒕 in the 𝑗𝑡ℎ of (𝑘 + 2)

intervals, while 𝑎𝑗, 𝑏𝑗 , 𝑐𝑗, 𝑑𝑗 are the polynomial coefficients to estimate.

Contributions
1. New Baseline Drift Compensation tool tailored for a wide range of                   

non-stationary biosignals (FRET, smFET, ECG, EEG, PCG, EMG)

2. Automatic baseline wander correction without signal prefiltering ,

data preparation nor post-processing.

3. Model-free unsupervised baseline drift compensation method,

where baseline parameters are learned from the raw signal without

any prior knowledge on the sensor characteristics nor on the

underlying kinetics of the probed phenomenon.

4. Robustness to high noise level (𝑺𝑵𝑹 < 𝟏𝒅𝑩) and mixed colored

noises

5. Fast computational time 𝓞 𝒏𝒍𝒐𝒈𝒏 , user-friendly implementation

Multiscale Signal Compression

to Multicomponent Signal Decomposition
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𝑳𝒌 =
𝒌

𝟐
𝒍𝒐𝒈𝑵 +

𝟏

𝟐


𝒋=𝟏

𝒌+𝟏

𝒍𝒐𝒈𝑵𝒋 +
𝑵

𝟐
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𝑵

+
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𝑪 =
𝑳 𝑿𝒕

𝑳𝒌,𝒍𝒎𝒊𝒏,𝟏
(𝒇𝟏 𝒕 )

…
𝑳 𝑿𝒕

𝑳𝒌,𝒍𝒎𝒊𝒏,𝒊
𝒇𝒊 𝒕

…
𝑳 𝑿𝒕
𝑳𝟎

𝒇𝒊 𝒕 = 𝒂𝒓𝒈𝒎𝒊𝒏(𝑳 𝒌,𝒍𝒎𝒊𝒏,𝒊
𝑿𝒕 , 𝟏 ≤ 𝒍𝒎𝒊𝒏,𝒊 ≤ 𝑵 )
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Signal Constraints & 

Specificities

1. Non-stationarity

2. Multi-source 

signals

3. (𝑺𝑵𝑹 < 𝟏𝒅𝑩) + 

mixed colored 

noises                  

4. Data size 

(sampling rate

25kHz during ~1h)

II. Information Theory to Sensor 

Baseline Drift Modeling

❑ Single-molecule sensors based on carbon nanotubes transducer,

enable to probe stochastic molecular dynamics thanks to long acquisition

periods and high-throughput measurements. With such sampling

conditions, the sensor baseline may drift significantly and induce fake states

& transitions in the recorded signal, leading to wrong kinetic models.

❑We present MDL-AdaCHIP: a multiscale signal compression technique

based on the Minimum Description Length (MDL) principle, combined

with an adaptive piecewise cubic Hermite interpolation (AdaCHIP), both

implemented into a blind source separation framework to compensate

the parasitic baseline drift in single-molecule biosensors.
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