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Speech Enhancement Proposed Intra-Spectral Output Layers
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= Speech has spectral dependencies along the frequency axis [1]. Wi ka1 “% v +0y (Wt pb X _q 1)
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Current approaches do not consider local spectral dependencies at adjacent or nearby

frequencies over short-time instances. | _
» Each neuron in the output layer corresponds to a frequency bin.

* Incorporate a first-order Markov assumption to learn spectral dependencies across
frequencies (ISR, ISBR).

A traditional LSTM network is first pre-trained, then a ISR/ISBR output layer replaces the
= Capture temporal dependencies with an LSTM RNN. original output layer.

Proposed Work:

= Develop a recurrent layer that captures frequency dependencies within each time frame. .

* Conduct experiments to determine system robustness. » LSTM network learns the temporal dependencies and ISR/ISBR learns spectral dependencies.

Notation Experiments and Results

» |[EEE speech corpus consists of 720 utterances.
me = S¢ —+ Nt , m

In the time domain,

_ | o Noise types: speech-shaped noise (SSN), cafeteria, factory, and babble.
where m; — noisy speech, s; — clean speech, n; = noise, t = time index * Trained in 3 SNR levels (-3, 0, 3 dB), tested in additional 2 SNR levels (-6 and 6 dB).

» Total training signals ~50 hrs, total validation signals ~11 hrs, total testing signals ~18.3 hrs.
In the time-frequency (T-F) domain,
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M, = ‘Mt k ‘e Mtk , Table: Average scores of the different models for seen SNRs (e.g. -3, 0, and 3 dB). Best results are shown in bold.
where M, — STFT of noisy speech, |[M; ;| — magnitude response, 8y, , — phase response, k = PESQ STOI SI-SDR
frequency index SSN Cafe Factory Babble SSN Cafe Factory Babble SSN Cafe Factory Babble
Mixture | 1.95 1.86 1.83 1.77 0.71 0.62 0.65 059 | -051  -2.06 -096  -1.97
» Estimation of the clean speech S, , can be predicted by, DNN [4] | 2.04 1.89 2.02 1.89 0.75 0.63 0.72 056 | -1.75  -1.1 14 -1.39
C — LSTM | 2.12 1.97 2.05 1.95 0.77 0.64 0.76 062 | -096  -1.35  -015  -0.44
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A . Ty D-ISR| 2.24 2.08 2.26 2.08 085 076 086  0.76 | -149  -291  -2.75  -348
St = |Sexle Ttk L-ISR| 2.27 2.21 2.29 2.11 0.82 0.68 0.84 0.72 0.06  -1.34 017 1.3
where |S; ;| — estimated clean magnitude, F() — estimation function with parameters ¢ L-ISBR| 2.3 224 231 213 | 088 074 087 073 | 235 -012 -094 -0.01
L-FT[2]| 2.12 2.01 2.07 2.04 0.82 0.74 0.82 0.66 1.04  -116  -088  -0.1
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» Uncorrelated (across time and frequency) outputs.
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= Spectral output at each neuron does not depend on spectral
outputs from other output-layer neurons.

= ReLU activation function, Adam optimizer, early stopping by
validation set. [3]

Conclusion and Future Works

* [mprovements in a variety of noises and SNR values prove that the proposed ISR/ISBR layer
along with a base LSTM network successfully captures both temporal and spectral
correlations.

* Overall performance of LSTM network with ISR/ISBR layer (L-ISR/L-ISBR) shows the
correlation between adjacent frequencies are important in the estimation of clean speech.

Frequency

* No pre-training and fine tuning steps.

DNN structure

Baseline LSTM architecture for the proposed approach: * Currently, mixture phase is used with enhanced speech magnitude.

* Input and output are magnitude of the spectrogram same as
baseline DNN.
l

* Qutput of each layer a; is computed by,

* Phase-level dependencies will be intergraded in the future work.
» Spectral dependencies greater than first-order markov should be explored.
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