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Introduction

Semi-continuous data have a point mass at zero
and are continuous with positive support. Such
data arise naturally in several real-life situations
like daily rainfall at a location, sales of durable
goods among many others. Therefore, efficient
estimation of the underlying probability density
function (PDF) is of significant interest.

Contribution
I We present an estimation method for

semi-continuous data based on the maximum
entropy principle.

I We demonstrate its successful application in
developing a new Independent Component
Analysis (ICA) algorithm,
ICA-Semi-continuous Entropy Maximization
(ICA-SCEM).

I We present a theoretical analysis of the
proposed estimation technique and using
simulated data we demonstrate the superior
performance of ICA-SCEM over classical ICA
algorithms.

Estimation using entropy maximization

The PDF of a semi-continuous random variable
Y can be written as1

p(y | γ, θ) = γδ(y) + (1− γ)δ∗(y)g(y | θ),

where g(y | θ) is a PDF of a continuous random
variable with support on (0,∞), γ is the point
mass at zero, δ(y) is the indicator function, and
δ∗(y) = 1− δ(y).

Maximum Entropy Principle:

max
p(y)

H(p(y)) = −
∫

I
p(y) log p(y) µ(dy)

s.t.
∫

I
hi(y)p(y) µ(dy) = αi, for i = 1, . . . ,K ,

where hi(y) are measuring functions,

αi =
∑T

t=1 hi(t)/T are the sample averages, and
K denotes the total number of measuring
functions.

Using the maximum entropy principle estimate
the distribution that maximizes the entropy of Y .

For known γ, the distribution that maximizes the
entropy of Y is given by1

p(y) = γδ(y) + (1− γ)δ∗(y)g∗(y),

where g∗ maximizes the entropy of a continuous
random variable with support (0,∞) subject to
the constraints

∫∞
0 hi(z)g(z)dz = αi

1−γ,
i = 1, . . . ,K .

1 S. K. Popuri, “Prediction Methods for Semi-continuous Data with

Applications in Climate Science,”Ph.D. thesis, University of Maryland,

Baltimore County, 2017.

Example

Suppose we have a sample of size n of
semi-continuous data {y1, . . . , yn}, γ is set to the
proportion of zeroes in the data, and

α2 =
1
n

∑
i :yi>0

yi and α3 =
1
n

∑
i :yi>0

log(yi).

The resulting MaxEnt distribution is given by

f (y | γ, κ, θ) = γδ(y) + (1− γ)δ∗(y)
yκ−1e−y/θ

θκΓ(κ)
,

where θ and κ are solutions to
α2 = κθ and α3 = ψ(κ) + log(θ),

where ψ(.) is the digamma function.

Application to ICA

Generative model: x = As, where x are the
observations and s are the latent sources
linearly mixed by matrix A.
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ICA can separate mixed
sources subject to
scaling and permutation
ambiguities by assuming
source independence.

w1

w2

w3

h1 = w2 ⇥w3

||w1|| cos�

�

1

T

N

XN⇥T

AN⇥N

SN⇥T

si

s

A

x

W

y

w1

w2

w3

h1 = w2 ⇥w3

||w1|| cos�

�

1

T

N

XN⇥T

AN⇥N

SN⇥T

si

s

A

x

W

y

w1

w2

w3

h1 = w2 ⇥w3

||w1|| cos�

�

1

T

N

XN⇥T

AN⇥N

SN⇥T

si

s

A

x

W

y

w1

w2

w3

h1 = w2 ⇥w3

||w1|| cos�

�

1

T

N

XN⇥T

AN⇥N

SN⇥T

si

s

A

x

W

y

w1

w2

w3

h1 = w2 ⇥w3

||w1|| cos�

�

1

T

N

XN⇥T

AN⇥N

SN⇥T

si

s

A

x

W

y

In order to estimate W, we minimize the mutual
information (MI) among the source estimates2

y1, . . . , yN

JICA(W) =
N∑

n=1

H(yn)− log | det(W)| − H(x),

where H(yn) = −E{log(p(yn))}.

Each yn is assumed to be semi-continuous.

Development of ICA-SCEM algorithm

Decoupling the MI cost function enables for the
development of effective algorithms2.

This is achieved by
expressing the volume
of the parallelepiped,
| det(W)|, as the
product of the area of
its base and its
height3.

The cost function with respect to each wn is
given by

JICA(W) =
N∑

n=1

H(yn)− log |(h>n wn)| (1)

− log | det(WnW>n )| − H(x).

The gradient of (1) can be written in the
decoupled form

∂J(W)

∂wn
= −E {φ(yn)x} − hn

h>n wn
, (2)

where φ(yn) = ∂ log p(yn)
∂yn

. As can be seen in (2),
each gradient direction depends directly on the
corresponding estimated source PDF and

∂ log p(yn,t)

∂yn,t
=

{
0, if yn,t = 0
∂ log g(yn,t |θn,t)

∂yn,t
, if yn,t > 0.

and φ(yn) = [
∂ log p(yn,1)

∂yn,1
, . . . ,

∂ log p(yn,T )
∂yn,T

]> is a vector
of partial derivatives of dimension T .

Experimental results

Simulation 1: Data for each source is generated
using the two-part gamma distribution

f (y | γ, κ, θ) = γδ(y) + (1− γ)δ∗(y)
yκ−1e−y/θ

θκΓ(κ)
,

where γ = 0.6, θ = 1, and κ = 1

Simulation 2: Data for the first two out of five
sources are generated using the two-part
gamma model and for the rest of the three
sources are generated using the following
two-part lognormal distribution

f (y | γ, µ, σ) = γδ(y) + (1− γ)δ∗(y)
1
y
φ
(log(y)− µ

σ

)
,

where data for the five sources are generated
according the following parameter choices

Source γ κ θ µ σ

1 0.6 1 1 − −
2 0.4 1 2 − −
3 0.6 − − 0 1
4 0.5 − − 0.5 0.5
5 0.4 − − 1 2

ICA-SCEM performs the best among well known
ICA algorithms in terms of separation
performance

Conclusion and future directions

An efficient density estimation method for
semi-continuous data was presented and a new
ICA algorithm for semi-continuous data,
ICA-SCEM, is proposed.
Future Directions:
I Comparisons of ICA-SCEM, with ICA

algorithms that exploit the sparsity of the data
as well as non-negative source separation
based methods.

I Multivariate extensions could be developed by
considering multivariate distributions for the
continuous part with element-wise Bernoulli
probabilities determining the presence of
zeros.

2 T. Adalı, M. Anderson, and G.-S. Fu, “Diversity in independent

component and vector analyses: Identifiability, algorithms, and

applications in medical imaging,” IEEE Signal Processing Magazine, vol.

31, no. 3, pp. 18-33, May 2014.
3 Z. Boukouvalas, Y. Levin-Schwartz, R. Mowakeaa, G.-S. Fu, and

T. Adalı, “Independent Component Analysis Using Semi-Parametric

Density Estimation Via Entropy Maximization,” In 2018 IEEE Statistical

Signal Processing Workshop (SSP), pp. 403-407, 2018.
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