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Semi-continuous data have a point mass at zero
and are continuous with positive support. Such
data arise naturally in several real-life situations
like daily rainfall at a location, sales of durable
goods among many others. Therefore, efficient
estimation of the underlying probability density
function (PDF) is of significant interest.

Observed daily precipitation from 1949-2000
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» We present an estimation method for
semi-continuous data based on the maximum
entropy principle.

» We demonstrate its successful application in
developing a new Independent Component
Analysis (ICA) algorithm,
ICA-Semi-continuous Entropy Maximization
(ICA-SCEM).

» We present a theoretical analysis of the
proposed estimation technigue and using
simulated data we demonstrate the superior
performance of ICA-SCEM over classical ICA
algorithms.

Estimation using entropy maximization

The PDF of a semi-continuous random variable
Y can be written as?

Py | 7,0) =vi(y) + (1 =7)o"(¥)gly | 0),
where g(y | 0) is a PDF of a continuous random

variable with support on (0, c0), v is the point
mass at zero, 4(y) is the indicator function, and

0*(y) =1-14(y)

Maximum Entropy Principle:

p(dy)

p(dy) =qj, fori=1,... K,

max H(p /p ) log p(y
p(y)
s.t. /hi(}’)P(

/
where h;(y) are measuring functions,

Z, . hi(t)/ T are the sample averages, and
K denotes the total number of measuring
functions.

Using the maximum entropy principle estimate
the distribution that maximizes the entropy of Y.

For known ~, the distribution that maximizes the
entropy of Y is given by’

ply) =oy) + (1 =)0 (¥)g"(y),
where g* maximizes the entropy of a continuous

random variable with support (0, co) subject to
the constraints [, hi(z)g(z)dz = 2%,
i=1,..., K.
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Suppose we have a sample of size n of
semi-continuous data {y1, ..., ¥n}, 7 Is set to the
proportion of zeroes in the data, and
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The resulting MaxEnt distribution is given by
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where 6 and « are solutions to
as = kb and ag = Y(k) + log(h),
where ¢(.) is the digamma function.

Application to ICA

Generative model: x = As, where x are the
observations and s are the latent sources
linearly mixed by matrix A.
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ICA can separate mixed
sources subject to
scaling and permutation
ambiguities by assuming
source independence.
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In order to estimate W, we minimize the mutual
information (MI) among the source estimates?

Yi,-- 5 YN
N
Jica(W) = Z H(yn) — log | det(W)| — H(x),

where H(y,) = —E{log(p(¥n))}-

Each y, is assumed to be semi-continuous.

Development of ICA-SCEM algorithm

Decoupling the MI cost function enables for the
development of effective algorithms?.

This is achieved by
expressing the volume
of the parallelepiped,

A hn = Wp_1 XWp_2

| det(W)|, as the o

product of the area of =

its base and its S R
height®. b .

The cost function with respect to each w, is
given by
N

- Z H(yn) — log |(h,wp) (1)

n=1

Jica(W)

— log | det(W,W )| — H(x).

The gradient of (1) can be written in the
decoupled form

OJ(W) h,
awn — —E{¢(yn)X} h;)rwna (2)
where ¢(y,) = a'ngrfy”). As can be seen in (2),

each gradient direction depends directly on the
corresponding estimated source PDF and

Jlog p(}/n,t) B 0, if Ynt = 0
OYn t 8|og%(;;n;t!9n,t)j if ynt > 0.
and ¢(y,) = [a"’gfni’“), L a"’g}",’n};’” |" is a vector

of partial derivatives of dimension T.
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Simulation 1: Data for each source is generated
using the two-part gamma distribution

k—1,—y/0
Y [70.8) = 2000)+ (1 = )8 (P o=

where v =0.6,0 =1,and k = 1
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Simulation 2: Data for the first two out of five
sources are generated using the two-part
gamma model and for the rest of the three
sources are generated using the following
two-part lognormal distribution

A | 7008.0) = 300) + (1 = 1)5" ()0 (PEL=E),

where data for the five sources are generated
according the following parameter choices
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ICA-SCEM performs the best among well known
ICA algorithms in terms of separation
performance

Conclusion and future directions

An efficient density estimation method for
semi-continuous data was presented and a new
ICA algorithm for semi-continuous data,
ICA-SCEM, is proposed.

Future Directions:

» Comparisons of ICA-SCEM, with ICA
algorithms that exploit the sparsity of the data
as well as non-negative source separation
based methods.

» Multivariate extensions could be developed by
considering multivariate distributions for the
continuous part with element-wise Bernoulli
probabilities determining the presence of
ZEros.
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