Self-supervised representation learning from electroencephalography signals Hubert Banville^{1,2}, Isabela Albuquerque³, Aapo Hyvärinen^{1,4}, Graeme Moffat², Denis-Alexander Engemann¹, Alexandre Gramfort¹ <u>Intia</u> ¹ Inria, Université Paris-Saclay, Paris, France ² InteraXon Inc., Toronto, Canada PARIETAL ³ INRS-EMT, Université du Québec, Montréal, Canada ⁴ Dept. of CS and HIIT, University of Helsinki, Finland

Main result: Self-supervision can be used to learn physiologically relevant features from unlabelled EEG time series and improve classification performance on sleep staging.

- Electroencephalography (EEG) is a multivariate time series whose labelling is expensive and time-consuming.
- However, large quantities of (unlabelled) EEG are available, e.g., sleep recordings.
- How can we leverage unlabelled time series like EEG to improve generalization or study physiological processes?
- Self-supervision can be used to build a supervised learning task out of unlabelled data [Doersch et al., 2015] [Hyvärinen & Morioka, 2019].

(temporal shuffling) color-coded by sleep stage.

Methods

2

Random weights (Rand. init.)

h(**x**_t) is a 4-layer CNN feature extractor [Chambon et al., 2018] with input size \sim (3840 × 3) and output size (100×1) . The model is separately pretrained on 5 different tasks, two of which (with *) are selfsupervised while the others are baselines.

Evaluate performance of learned features on sleep staging task.

predicted W <mark>N1</mark> N2 N3 R W N1 <mark>N2</mark> N3 R sleep stage

Time (e.g., minutes, hours)

Given two windows x_t and x_t , the model must predict whether the two windows are *close or far away in time*. The second approach - temporal shuffing (TS) - is similar, but introduces a third window (not shown).

 $x_t \in \mathbb{R}^{3840 \times 3}$: EEG window (samples x channels)

 $x_{t_{anchor}}$: anchor window $\begin{array}{l} x_{t'_{pos/neg}} \\ \overline{\tau_{pos}} \in \mathbb{R}: \text{ positive context around } x_{t_{anchor}} \end{array} y_i = \begin{cases} 1, & \text{if } |t_i - t'_i| \leq \tau_{pos} \\ -1, & \text{if } |t_i - t'_i| > \tau_{neg} \end{cases} \end{array}$ $\tau_{neq} \in \mathbb{R}$: negative context around $x_{t_{anchor}}$

 $\mathcal{L}(\Theta, w, w_0) = \sum \log(1 + \exp(-y[w^{\top}g(h(x_t), h(x_{t'})) + w_0]))$ $(x_t, x_{t'}, y) \in \mathcal{Z}_N$

Results

Experiment 1:

Our self-supervised models learn representations of EEG signals and **facilitate sleep staging**.

	$ au_{pos}$	$ au_{neg}$	bal acc_{SSL}	bal $\operatorname{acc}_{staging}$
*RP	2	2	79.49	75.73
	4	15	78.60	76.66
	120	120	56.30	65.71
*TS	2	2	81.42	75.90
	4	15	82.12	75.37
	120	120	66.59	66.66
EEG features	_	_	_	79.43
Supervised	_	_	_	72.51

Experiment 2:

Self-supervised models achieve **much higher performance** than supervised ones when few examples are available.

Experiment 3:

Learned features are **physiologically relevant** and are related to **sleep** macrostructure (Fig. 1) and age.

While hyperparameters τ_{pos} and τ_{neg} (in mins) impact performance in both the self-supervised and sleep staging tasks, sleep staging performance remains comparable to the one of baseline methods.

The feature extractors trained with self-supervision outpeform other methods when fewer than $\sim 1,000$ examples are available per class.

Discussion

- We introduced **two self-supervised tasks** with a **deep** learning architecture for learning features from raw EEG.
- The learned features captured **sleep** and **age-related** structure.
- **Classification performance improved** as compared to pure supervision.
- **Next steps**: What other pretext tasks would allow learning complementary information? Can we improve the algorithmic efficiency by using a smarter sampling methodology?

References

- Chambon et al. (2018). "A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series." IEEE Trans Neur Syst Rehab Eng.
- **Doersch et al. (2015)**. "Unsupervised visual representation learning by context prediction." ICCV.
- Hyvärinen et al. (2019). "Nonlinear ICA using auxiliary variables and generalized contrastive learning." AISTATS.

Kemp et al. (2000). "Analysis of a sleep-dependent neuronal feedback loop the slow-wave microcontinuity of the EEG." IEEE Trans on Biomed Eng. **O'Reilly et al. (2014)**. "Montreal Archive of Sleep Studies: an open-source resource for instrument benchmarking and exploratory research." Journal of Sleep Research.

Figure 2: UMAP visualization of features learned with temporal shuffling on Sleep EDF, color-coded by age groups. See also Fig. 1 for sleep macrostucture color-coding.

