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Macro-Expressions Micro-Expressions

 Obvions / Intense

 Global Face reaction

 > 1/2 s

 Real / Fake

 Gender, ethnicity, age, ...

 Low intensity

 Local Face reaction

 < 1/2 s (to 1/25 s)

 Spontaneous (Real)

 Universal
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Less is More

MiEs : Catch me If you can :p 

Me : Hey ! First of all, are you local or global reaction of the face

MiEs : Hmmmm I really don’t know, but you can ask Paul Ekman

P. Ekman : yeah !! you can say that

Zaho et al. : we confirm, we recently did a research on that and guess what!                          

we’ve got more than 20% precision higher with only traditional                            

method. Get yourself ready MiEs :p :p

Me : Hmmmm OK, so the less parts I use the more relevant spatio-temporal           

features I got and with DL I expect to get a better result ….. good, thanks
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Sad

Angry
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Convolutional  
Layer

Volume : n x m x L  
Array of pixel values

X Feature Maps

L : Image height m :

Image width n :
color depth
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LSTM: Long Short Term Memory

Sequences 

RNN: Recurrent Neural Network

Evoloution of Filters through Time

Words in paragraph

Video etc ...

LSTM architecture
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Provided Database :  Spontaneous Micro-Expressions

classe
ssamples

3                   5                      7

164                255                 159 

⚫ CASME I

⚫ CASME II
⚫ CAS(ME)2

⚫ SAMM
⚫ SMIC-SUB

⚫ SMIC
⚫ Polikovsky’s

⚫ USF-HD

⚫ MEVIEW

⚫ YorkDDT

⚫ ...



20

Conclusion &

Perspectives
Introduction Experiments 

& results

State-of-

the-art

Proposed 

Solution

• Data

• Experimental Setup

• Evaluation Metric

• Results & Discussion 

Provided Database :

3 Classes : Emotions : - / + / s

MEGC 2019
 Negative class of CASMEII consists of samples from its original 

emotions class of Disgust and Repression

 Negative class of SAMM consists of samples from original 

emotions class of Anger, Contempt, Disgust, Fear and Sadness
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⚫ Regions crop : Dlib library , 68 landmarks

⚫ Different regions, different labels

⚫ CNNs trained with 64 batch size & 100 epochs

⚫ LSTM+FCL Network trained with 244 batch size and 60 

epoch

⚫ Ubuntu 18.04.2 LTS, python3.6, keras-gpu2.2.4, tensorflow-

gpu1.12.0, Geforce GTX 1080Ti GPU (32 GB memory) and 

Intel Xeon Processor

Network Settings :
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LOSO-CV 

Protocole

UF1 score UAR score

Training Protocol :
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UF1 : 0.9022

Confusion Matrix  , FULL Database

(CASMEII, SAMM, SMIc) ,MEGC 2019 

Conditions, (0 : Negative, 1:Positive, 2 : 

Surprise)
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⚫ Less is More

⚫ Deep Learning : CNN (inception block) + LSTM

Accuracy :
More than 90 %
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