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Less is More

MiEs : Catch me If you can :p 

Me : Hey ! First of all, are you local or global reaction of the face

MiEs : Hmmmm I really don’t know, but you can ask Paul Ekman

P. Ekman : yeah !! you can say that

Zaho et al. : we confirm, we recently did a research on that and guess what!                          

we’ve got more than 20% precision higher with only traditional                            

method. Get yourself ready MiEs :p :p

Me : Hmmmm OK, so the less parts I use the more relevant spatio-temporal           

features I got and with DL I expect to get a better result ….. good, thanks
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LSTM: Long Short Term Memory

Sequences 

RNN: Recurrent Neural Network

Evoloution of Filters through Time

Words in paragraph

Video etc ...

LSTM architecture
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Provided Database :  Spontaneous Micro-Expressions

classe
ssamples

3                   5                      7

164                255                 159 

⚫ CASME I

⚫ CASME II
⚫ CAS(ME)2

⚫ SAMM
⚫ SMIC-SUB

⚫ SMIC
⚫ Polikovsky’s

⚫ USF-HD

⚫ MEVIEW

⚫ YorkDDT

⚫ ...
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Provided Database :

3 Classes : Emotions : - / + / s

MEGC 2019
 Negative class of CASMEII consists of samples from its original 

emotions class of Disgust and Repression

 Negative class of SAMM consists of samples from original 

emotions class of Anger, Contempt, Disgust, Fear and Sadness
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⚫ Regions crop : Dlib library , 68 landmarks

⚫ Different regions, different labels

⚫ CNNs trained with 64 batch size & 100 epochs

⚫ LSTM+FCL Network trained with 244 batch size and 60 

epoch

⚫ Ubuntu 18.04.2 LTS, python3.6, keras-gpu2.2.4, tensorflow-

gpu1.12.0, Geforce GTX 1080Ti GPU (32 GB memory) and 

Intel Xeon Processor

Network Settings :
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LOSO-CV 

Protocole

UF1 score UAR score

Training Protocol :
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Conditions, (0 : Negative, 1:Positive, 2 : 
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⚫ Less is More

⚫ Deep Learning : CNN (inception block) + LSTM

Accuracy :
More than 90 %
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