A spatiotemporal deep learning solution for

Automatic Micro-Expressions Recognition From Local

Facial Regions

Authors:

Mouath Aouayeb Wassim Hamidouche Kidiyo Kpalma Amel Benazza-Benyahia

IEEE MLSP 2019

Pittsburgh, PA, USA

DES SCIENCES APPLIQUÉES

- I. Introduction
- II. State-of-the-art
- III. Proposed solution
- IV. Experiments and results
- V. Conclusion and perspectives

Outline

I. Introduction

I. Goals & Motivation

II. Macro- & Micro Expressions

III. Problematic & Objectives

II. State-of-the-art

III. Proposed solution

IV. Experiments and results

V. Conclusion and perspectives

	 Goals & Motivation 				
Introduction	Macro- & Micro Expressions	State-of- the-art	Proposed Solution	Experiments & results	Conclusion & Perspectives
	 Problematic & objectives 				

Psycho treatment

Police Interrogation

Driven warning

Goals & Motivation

Introduction

 Macro- & Micro Expressions

Problematic & objectives

Macro-Expressions

- Obvions / Intense
- Global Face reaction
- ∗ > 1/2 s
- * Real / Fake
- * Gender, ethnicity, age, ...

State-of-
the-artProposed
SolutionExperiments
& resultsConclusion &
Perspectives

Fear Upper eyelids raised

Disgust Anger Nose wrinkled Jaw thrust forward

Determination/Anger Lips pressed

Sadness Eyebrows drawn up

Sadness Lip corners down

Micro-Expressions

- Low intensity
- Local Face reaction
- x < 1/2 s (to 1/25 s)</pre>
- Spontaneous (Real)
- Universal

• G	Joals & Motivation				
Introduction . M EX • Pi	Macro- & Micro Expressions Problematic & Objectives	State-of- the-art	Proposed Solution	Experiments & results	Conclusion & Perspectives

Rr

Deep Learning

Challenging task

Outline

I. Introduction

II. State-of-the-art

- I. Handcrafted Approach
- II. DL Approach
- III. Hybrid Approach
- IV. Region based Approach

III. Proposed solution

IV. Experiments and results

V. Conclusion and perspectives

Introduction State-of- the-art • Handcrafted Approach • DL Approach • Hybrid Approach • Region based Approach	Proposed Solution	Experiments & results	Conclusion & Perspectives
 Handcrafted Solutions : LBP-TOP : Local Binary Pattern on Three Orthogonal Planes 3D-HOG : 3D-Gradients orientation Histogram Bi-WOOF : Bi-Weighted Oriented Optical Flow HOOF : Histogram of Oriented Optical Flow 		 Deep Learning CNN + LSTM 3D-CNN: 3D Spatiote LEARNet : Lateral Action CapsuleNet 	Solutions : emporal CNN ccretive Hybrid Network
 Hybrid Solutions : ELRCN : Enriched Long-term Recurrent CNN Off-ApexNet : Optical Flow Features from Apex frame Network STSTNet : Shallow Triple Stream Three-dimensional CNN STRCN : Spatiotemporal Recurrent Convolution Network 	<	 Region based NMPs: Necessary Improved version of MicroExpFuseNet 	

Introduction State-of- the-art • Handcrafted Approach • DL Approach • Hybrid Approach • Region based Approach	Proposed Solution	Experiments & results	Conclusion & Perspectives
 Handcrafted Solutions : LBP-TOP : Local Binary Pattern on Three Orthogonal Planes 3D-HOG : 3D-Gradients orientation Histogram Bi-WOOF : Bi-Weighted Oriented Optical Flow HOOF : Histogram of Oriented Optical Flow 		 Deep Learning CNN + LSTM 3D-CNN: 3D Spatiot LEARNet : Lateral A CapsuleNet 	Solutions : emporal CNN ccretive Hybrid Network

Hybrid Solutions :

- ELRCN : Enriched Long-term Recurrent CNN
- Off-ApexNet : Optical Flow Features from Apex frame Network
- STSTNet : Shallow Triple Stream Three-dimensional CNN
- STRCN : Spatiotemporal Recurrent Convolution Network

Region based Solutions :

- NMPs: Necessary Morphological Patches
- Improved version of NMPs
- → MicroExpFuseNet

IntroductionState-of- the-art• Handcrafted Approach • DL Approach • Hybrid Approach • Region based Approach	Proposed Solution	Experiments & results	Conclusion & Perspectives
 Handcrafted Solutions : LBP-TOP : Local Binary Pattern on Three Orthogonal Planes 3D-HOG : 3D-Gradients orientation Histogram Bi-WOOF : Bi-Weighted Oriented Optical Flow HOOF : Histogram of Oriented Optical Flow 		Deep Learning CNN + LSTM 3D-CNN: 3D Spatiot LEARNet : Lateral Additional Addition	Solutions : emporal CNN ccretive Hybrid Network
 Hybrid Solutions : ELRCN : Enriched Long-term Recurrent CNN Off-ApexNet : Optical Flow Features from Apex frame Networ STSTNet : Shallow Triple Stream Three-dimensional CNN STRCN : Spatiotemporal Recurrent Convolution Network 	k	 Region based → NMPs: Necessary → Improved version of 	

IOEXpruseitei

 Introduction State-of- the-art Building Handcrafted Approach DL Approach Hybrid Approach Region based Approach 	Proposed Solution	Experiments & results	Conclusion & Perspectives
 Handcrafted Solutions : LBP-TOP : Local Binary Pattern on Three Orthogonal Planes 3D-HOG : 3D-Gradients orientation Histogram Bi-WOOF : Bi-Weighted Oriented Optical Flow HOOF : Histogram of Oriented Optical Flow 		Deep Learning CNN + LSTM 3D-CNN: 3D Spatiote LEARNet : Lateral Ac CapsuleNet	Solutions : emporal CNN ccretive Hybrid Network
 Hybrid Solutions : ELRCN : Enriched Long-term Recurrent CNN Off-ApexNet : Optical Flow Features from Apex frame Network STSTNet : Shallow Triple Stream Three-dimensional CNN STRCN : Spatiotemporal Recurrent Convolution Network 		 Region based NMPs: Necessary Improved version of MicroExpFuseNet 	Solutions : Morphological Patches

- I. Introduction
- II. State-of-the-art
- III. Proposed solution
 - I. Idea and added value
 - II. Overview
 - III. CNN
 - IV. LSTM
- IV. Experiments and results
- V. Conclusion and perspectives

MiEs : Catch me If you can :p

Me: Hey ! First of all, are you local or global reaction of the face

MiEs : Hmmmm I really don't know, but you can ask Paul Ekman

P. Ekman : yeah !! you can say that

Zaho et al. : we confirm, we recently did a research on that and guess what! we've got more than 20% precision higher with only traditional method. Get yourself ready MiEs :p :p

Me : Hmmmm OK, so the less parts I use the more relevant spatio-temporal features I got and with DL I expect to get a better result good, thanks

LSTM architecture

- I. Introduction
- II. State-of-the-art
- III. Proposed solution
- IV. Experiments and results
 - I. Data
 - II. Experimental Setup
 - III. Evaluation Metric
 - IV. Results & Discussion

V. Conclusion and perspectives

Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
				Results & Discussion	

Data

Provided Database : Spontaneous Micro-Expressions

		SMIC	CASME II	SAMM
Participants		16	24	28
Frame rate (fps)		100	200	200
Avg. frame number		34	68	74
Avg. video duration (s)		0.34	0.34	0.37
C l l	Onset	Yes	Yes	Yes
Ground-truth	Offset	Yes	Yes	Yes
(index)	Apex	No	Yes	Yes
Number of classe		3	5	7
Number of sam	ples	164	255	159

CASME I

- CASME II
- CAS(ME)²
- SAMM
- SMIC-SUB
- SMIC
- Polikovsky's
- USF-HD
- MEVIEW
- YorkDDT

...

19

		_		Duiu	
Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
				Results & Discussion	

Data

Provided Database :

3 Classes : Emotions : - / + / s

Emotion Class	SMIC	CASME II	SAMM	3DB-combined
Negative	70	<mark>88</mark> †	92 [‡]	250
Positive	51	32	26	109
Surprise	43	25	15	83
TOTAL	164	145	133	442

MEGC 2019

- Negative class of CASMEII consists of samples from its original emotions class of Disgust and Repression
- Negative class of SAMM consists of samples from original emotions class of Anger, Contempt, Disgust, Fear and Sadness

		_		Dara	
Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
	1			Results & Discussion	

• Data

Network Settings :

- <u>Regions crop : Dlib library , 68 landmarks</u>
- Different regions, different labels
- CNNs trained with 64 batch size & 100 epochs
- LSTM+FCL Network trained with 244 batch size and 60 epoch
- Ubuntu 18.04.2 LTS, python3.6, keras-gpu2.2.4, tensorflowgpu1.12.0, Geforce GTX 1080Ti GPU (32 GB memory) and Intel Xeon Processor

		_		• Data	
Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
·				Results & Discussion	

Training Protocol :

$$F1_c = \frac{2TP_c}{2TP_c + FP_c + FN_c}, \qquad \qquad \text{UAR score}$$

UF1 score

$$UF1 = \frac{F1_c}{C},$$

22

 $UAR = \frac{1}{C} \sum_{c=1}^{C} ACC_c$ $ACC_c = \frac{TP_c}{N_c}$

		_		• Data	
Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
·				Results & Discussion	

Results:

(CASMEII, SAMM, SMIc) ,MEGC 2019 Conditions, (0 : Negative, 1:Positive, 2 : Surprise) Accuracy : 0.9095 UAR : 0.9018 UF1 : 0.9022

				• Data	_
Introduction	State-of- the-art	Proposed Solution	Experiments & results	Experimental SetupEvaluation Metric	Conclusion & Perspectives
				Results & Discussion	

Comparison :

Models	FULL		SMIC		CASAME II		SAMM	
	UF1	UAR	UF1	UAR	UF1	UAR	UF1	UAR
LBP-TOP [22] ^{\$}	0.5882	0.5785	0.2000	0.5280	0.7026	0.7429	0.3954	0.4102
Bi-WOOF [5] [◊]	0.6296	0.6227	0.5727	0.5829	0.7805	0.8026	0.5211	0.5139
OFF-ApexNet [7] [†]	0.7196	0.7096	0.6817	0.6695	0.8764	0.8681	0.5409	0.5392
Micro-Attention [13] [⊕]	0.5080	0.4930	0.4730	0.4660	0.5390	0.5170	0.4030	0.3400
ATNet (Fusion) [26] ^{\oplus}	0.6310	0.6130	0.5530	0.5430	0.7980	0.7750	0.4960	0.4820
Quang <i>et al.</i> $[12]^{*\oplus}$	0.6520	0.6506	0.5820	0.5877	0.7068	0.7018	0.5882	0.5989
Zhou <i>et al</i> . [27]* [†]	0.7322	0.7278	0.6645	0.6726	0.8621	0.8560	0.5868	0.5663
Liong <i>et al.</i> [8] ^{*†}	0.7353	0.7605	0.6801	0.7013	0.8382	0.8686	0.6588	0.6810
Liu e <i>et al.</i> [28]* [†]	0.7885	0.7824	0.7461	0.7530	0.8293	0.8209	0.7754	0.7152
Our proposed method \oplus	0.9022	0.9018	0.8886	0.8828	0.9857	0.9857	0.7855	0.8103

 $^{\diamond}$ handcrafted approach, † hybrid approach, $^{\oplus}$ deep learning approach.

- I. Introduction
- II. State-of-the-art
- III. Proposed solution
- IV. Experiments and results
- V. Conclusion and perspectives
 - I. Conclusion
 - II. Perspectives

Introduction	State-of-	Proposed	Experiments	Conclusion &	 Conclusion
	the-art	Solution	& results	Perspectives	 Perspectives

• Less is More

• Deep Learning : CNN (inception block) + LSTM

Accuracy : More than 90 %

Introduction	State-of-	Proposed	Experiments	Conclusion &	 Conclusion
	the-art	Solution	& results	Perspectives	 Perspectives

- Data Augmentation
- Adaptive analysis of MiE for Medical use case
- Complexe Micro-Expressions

A spatiotemporal deep learning solution for Automatic Micro-Expressions Recognition From Local Facial Regions

