

Online Learning for Indoor Asset Detection

Adith Balamurugan & Avideh Zakhor University of California, Berkeley Video and Image Processing Lab

Motivation

• Problem:

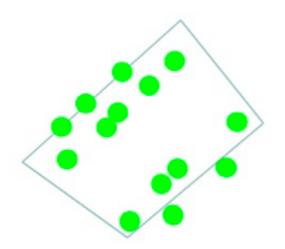
- Goal: record asset type and location within building
- Uses: Climate control, safety, security, maintenance, etc...
- Example assets: Router, fire sprinkler, fire alarm, fire alarm handle, EXIT sign, cardkey reader, light switch, emergency lights, fire extinguisher, outlet, etc.
- Challenges:
 - Existing methods manual, slow, & error prone
 - ML solutions have long far too long training time
 - Training on acquired imagery, not existing databases

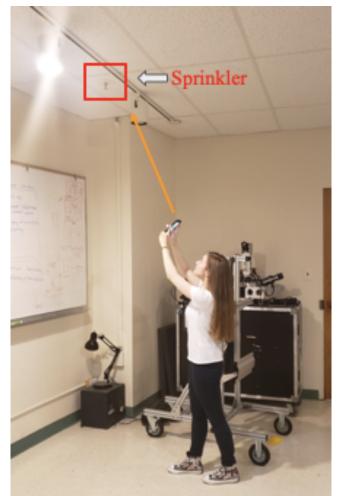
• Advantages:

- Semi-automated
- Online learning learning on the fly with limited data
- Exploit asset similarities within buildings
 - Instance rather than category recognition

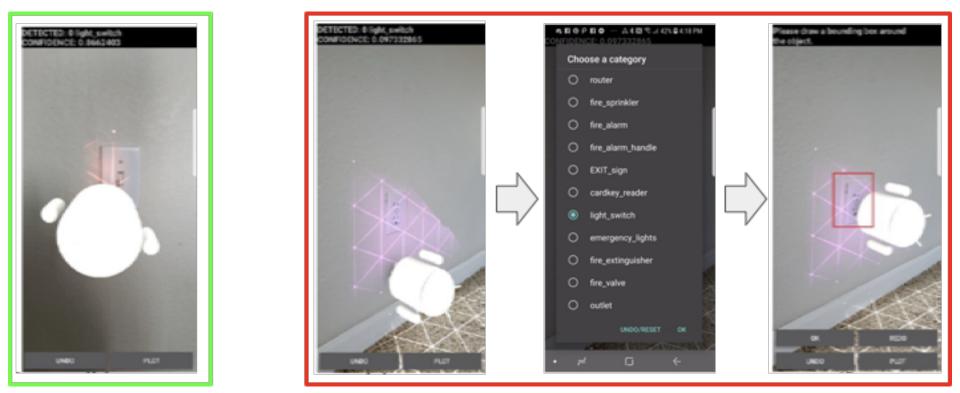
Smartphone App

- Human in the loop
- Detect/Identify assets
- Localize assets

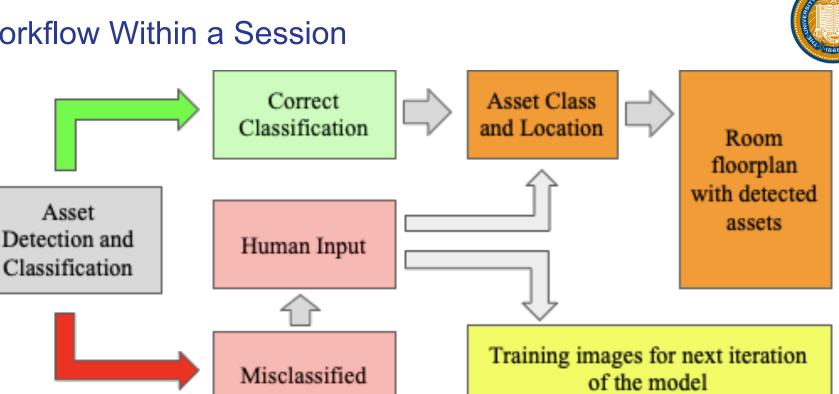




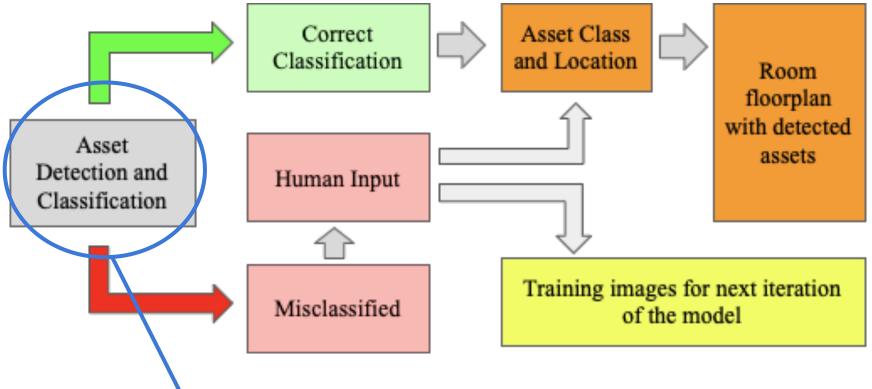
Operation of the App



Workflow Within a Session



Workflow Within a Session



How do we accomplish this?

Previous Approach: Transfer Learning

- Single Shot Detector (SSD) model [1]:
 - Mobile net V1 pre-trained on the MSCOCO dataset [2]
 - Data Augmentations
- Convert trained model to TFLite Model to reside on smartphone

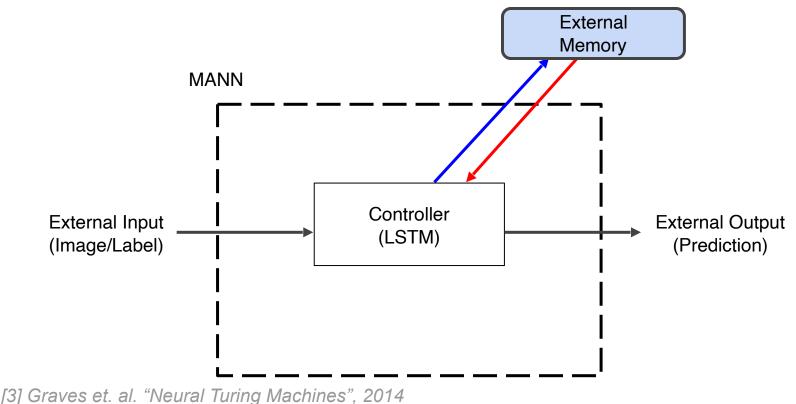
[1] Kostoeva et. al. "Indoor 3D Interactive Asset Detection Using a Smartphone", SPIE Electronic Imaging 2018 [2] Lin et. al. "Miscrosoft COCO: Common Objects in Context" , 2015

Shortcomings of previous approach:

- No real-time adaptation to seen examples
 - Model frozen during each session; updated only in between sessions
 - Lower accuracy for new buildings
- Retrain on all previous examples
 - Training times of more than 18 hours!

Proposed Approach: Online Learning

MANN (Memory Augmented NN)

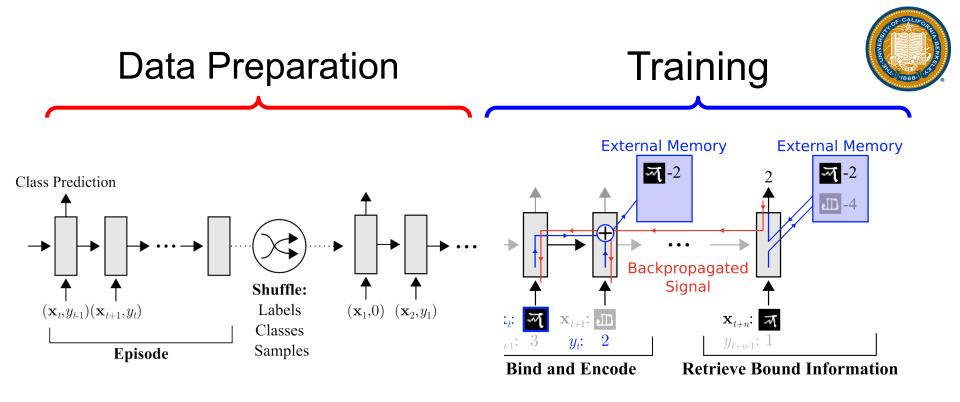


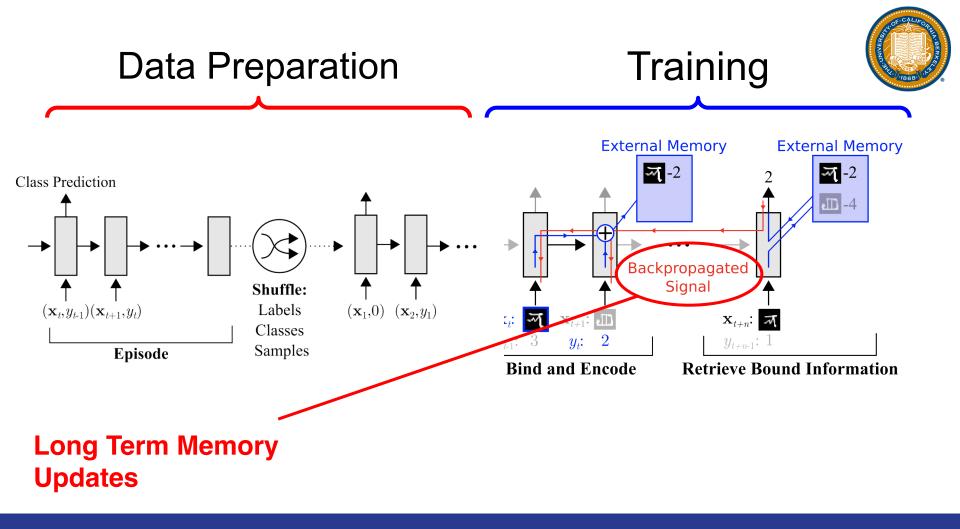
[4] Santoro et. al. "One-Shot Learning with Memory-Augmented Neural Networks", 2016

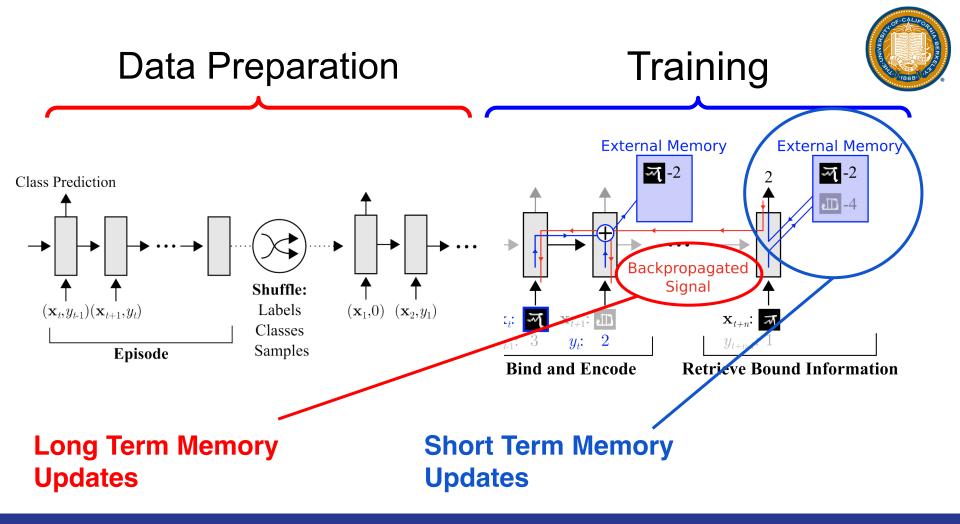
Why Use a MANN?

- Meta-learning in tasks that carry significant short- and long-term memory demands.
- Allows successful classification of never-before-seen instances
- Long Term Memory Update Weights of the Model:
 - Used to maintain high level class differentiation
- Short Term Memory Utilization of External Memory:
 - Adapt quickly to the new instances

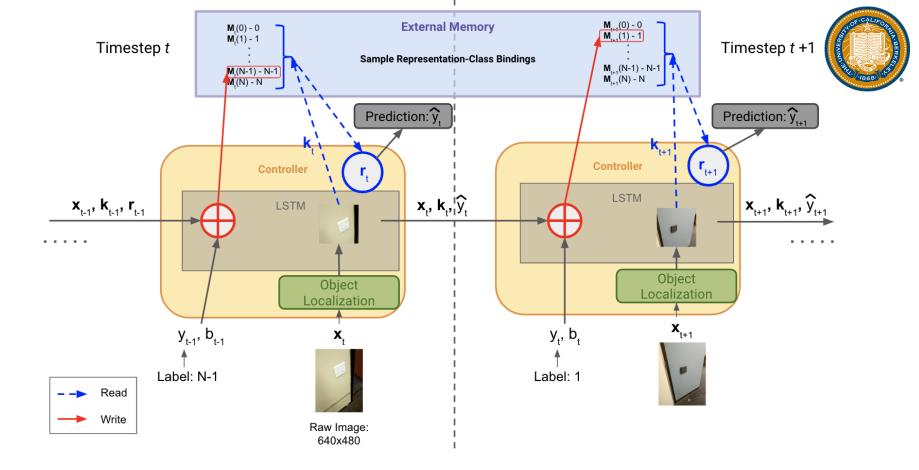
[4] Santoro et. al. "One-Shot Learning with Memory-Augmented Neural Networks", 2016

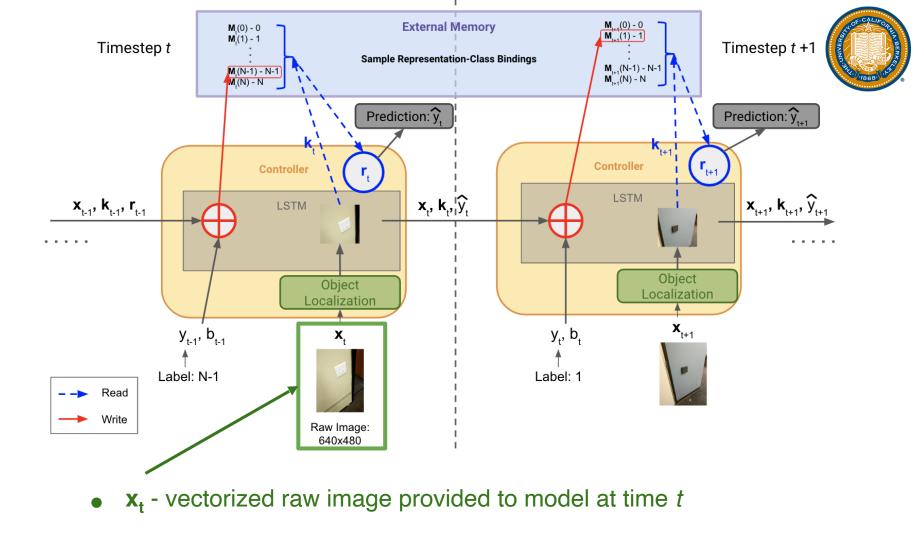


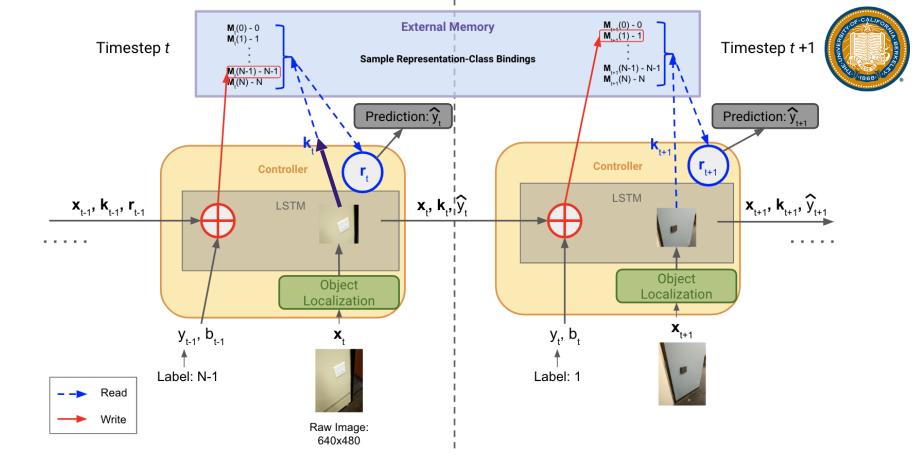


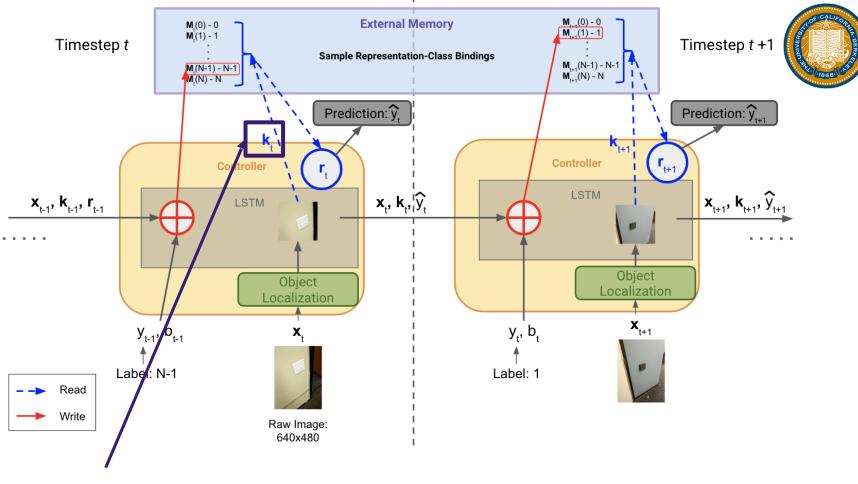


Define the moving parts of the system

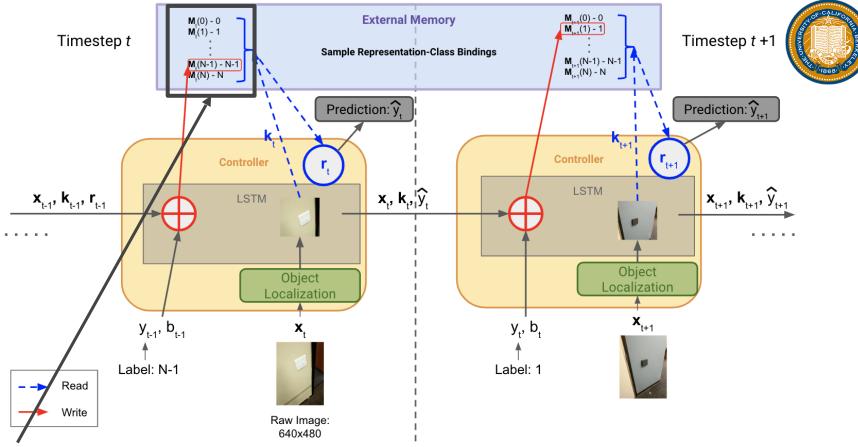




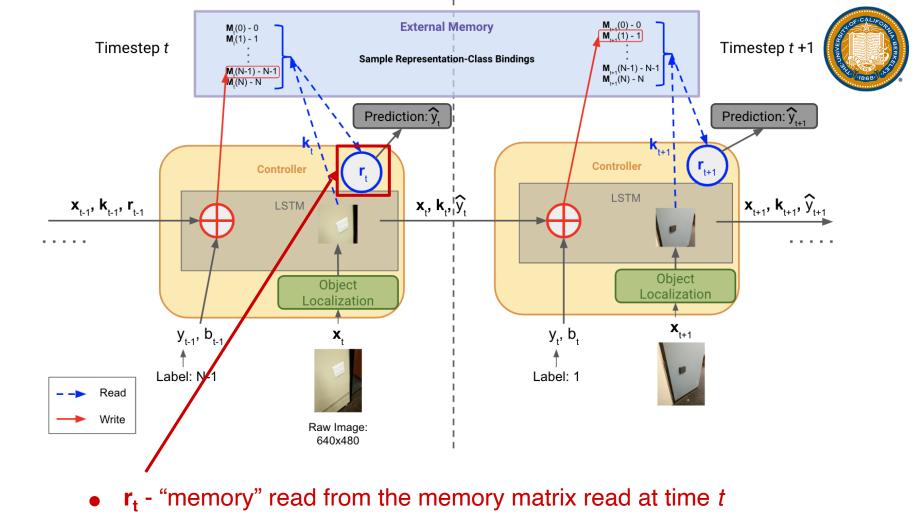


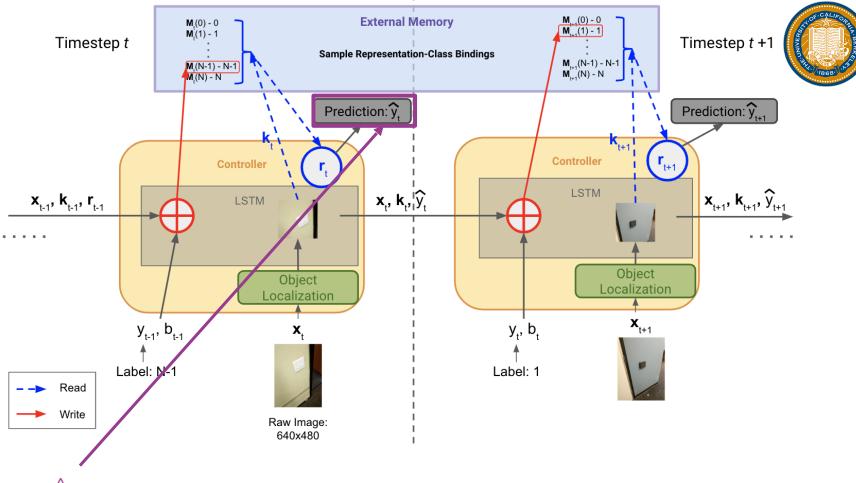


• **k**_t - *M*-dimensional vector "key" representation outputted by LSTM

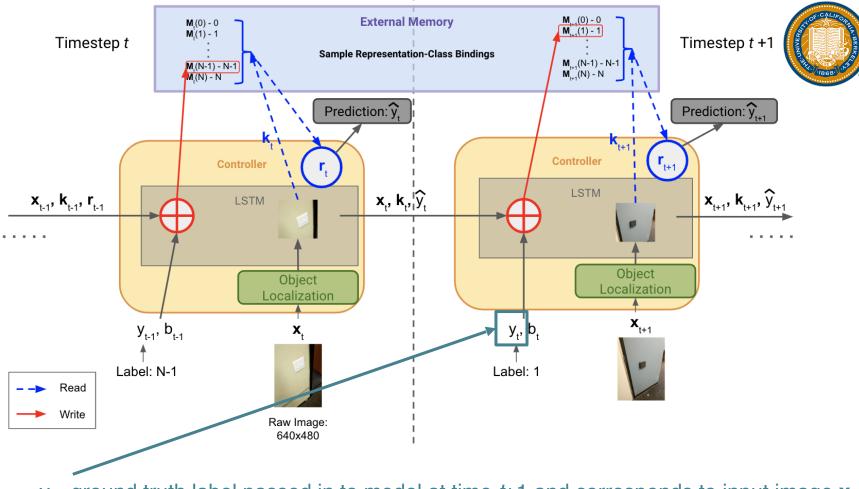


- M_t the $N \times M$ memory matrix at time t
 - \circ *N* the number of classes in our system, 10, for the number of assets
 - *M* dimension of the condensed representation, generated by the LSTM, for an input image

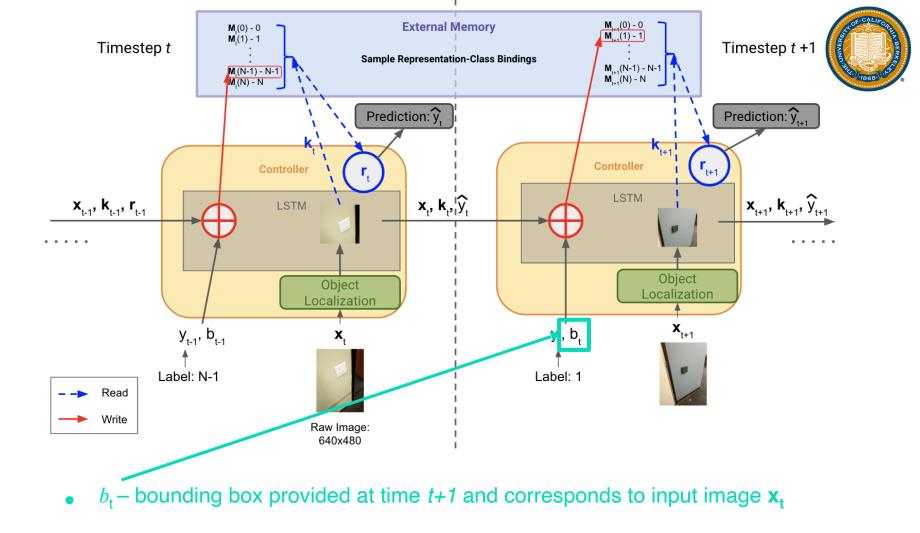


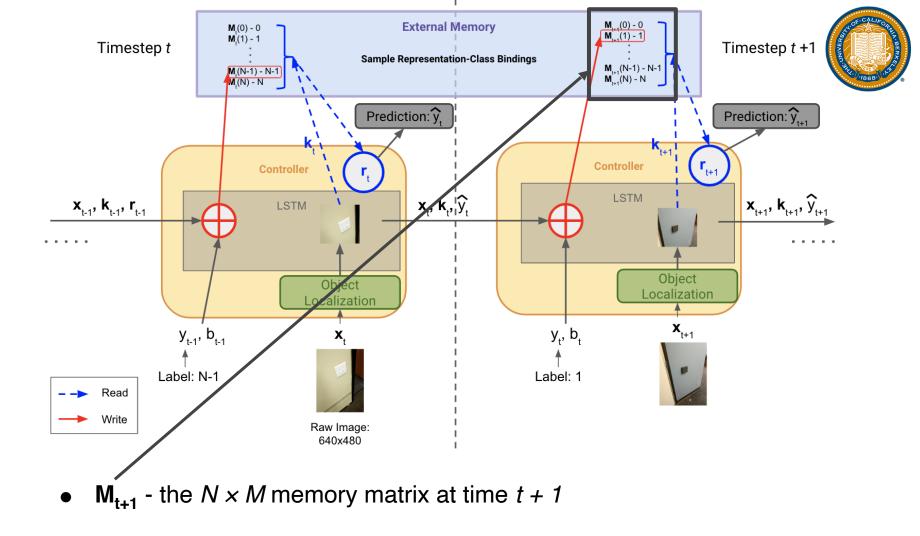


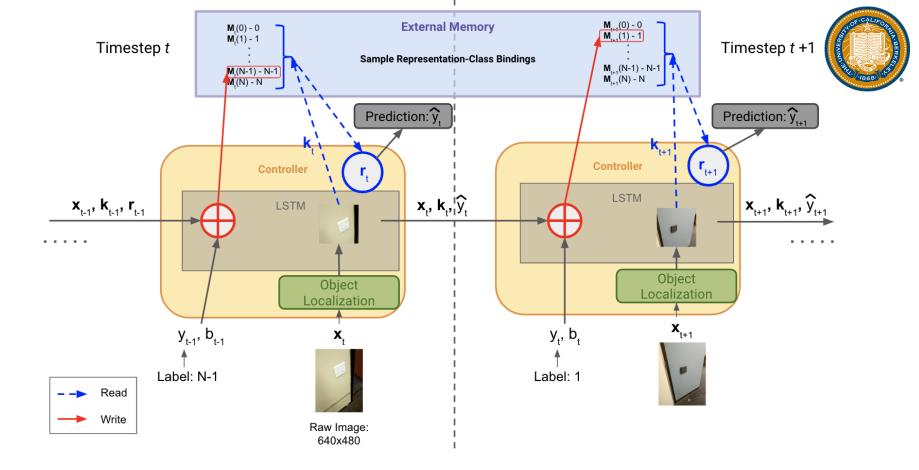
• \hat{y}_t - predicted label for image at time *t* and corresponds to input image \mathbf{x}_t



• y_t - ground truth label passed in to model at time *t*+1 and corresponds to input image x_t



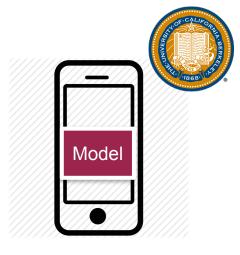




A STATE OF THE STA

1. Load model weights onto phone for a new session

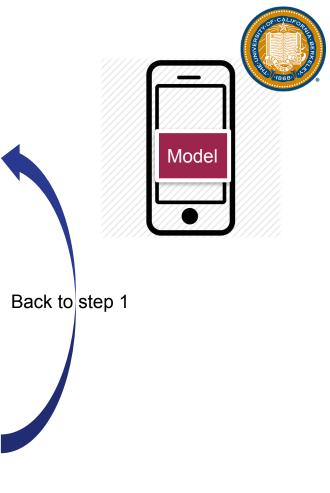
- 1. Load model weights onto phone for a new session
- 2. During data collection session:
 - Model makes predictions
 - Updates external memory: few ms



- 1. Load model weights onto phone for a new session
- 2. During data collection session:
 - Model makes predictions
 - Updates external memory: few ms
- 3. With each added asset, performance improves

- 1. Load model weights onto phone for a new session
- 2. During data collection session:
 - Model makes predictions
 - Updates external memory: few ms
- 3. With each added asset, performance improves
- 4. Use newly collected data in the session to train long-term memory weights

- 1. Load model weights onto phone for a new session
- 2. During data collection session:
 - Model makes predictions
 - Updates external memory: few ms
- 3. With each added asset, performance improves
- 4. Use newly collected data in the session to train long-term memory weights



Choices in Offline Training Method

- Should we train on only the negative, or incorrectly classified, examples?
- Should we retain short-term memory across sessions?

	Clear External Memory	Retain External Memory
(-) Examples	Mode 1	Mode 2
(-/+) Examples	Mode 3	Mode 4 w/ decaying memory retention

Results compared to previous method

		Evaluation Set				
		Day 1	Day 2	Day 3	Day 3	Day 4
Model		(CH)	(CH)	(SDH)	(EH)	(CH)
SSE	D [1]	67.2	81.7	74.3	54.7	73.6
Our	S					
(1)	Acc.(%)	58.6	60.9	63.5	62.9	69.78
	Std Dev.(%)	0.11	0.08	0.05	0.14	0.03
Mode	Min Acc.(%)	54.1	55.7	60.6	56.2	60.1
N	Max Acc.(%)	62.0	64.1	65.8	67.5	70.3
Mode (2)	Acc.(%)	66.7	63.9	67.6	64.33	76.2
	Std Dev.(%)	0.21	0.11	0.08	0.13	0.02
	Min Acc.(%)	59.9	61.3	63.4	60.1	74.0
	Max Acc.(%)	70.0	66.2	69.3	66.7	77.3
(3)	Acc.(%)	73.1	74.3	76.2	69.3	77.1
e ()	Std Dev.(%)	0.12	0.13	0.01	0.10	0.008
Mode	Min Acc.(%)	68.8	70.2	75.1	68.8	76.0
Z	Max Acc.(%)	75.2	75.1	77.1	70.1	77.8
Mode (4)	Acc.(%)	73.1	82.3	74.7	69.8	79.0
	Std Dev.(%)	0.07	0.01	0.04	0.08	0.10
	Min Acc.(%)	71.8	77.8	70.9	67.1	77.2
Z	Max Acc.(%)	76.2	84.1	76.3	71.5	83.6

Tensorflow Model (150 MB) converted to TFLite Model (80 MB) to port onto phone

	Evaluation Set						
	Day 1	Day 2	Day 3	Day 3	Day 4		
Model	(CH)	(CH)	(SDH)	(EH)	(CH)		
SSD [1]	67.2	81.7	74.3	54.7	73.6		
Ours (TFLite)	71.8	81.8	74.0	68.8	77.9		
Ours (Full TF)	73.1	82.3	74.7	69.8	79.0		
Δ Ours (Full TF) - Ours (TFLite)	+1.3	+0.5	+0.7	+1.0	+1.1		
Δ Ours (TFLite) - SSD	+4.6	+0.1	-0.3	+14.1	+4.3		

Tensorflow Model (150 MB) converted to TFLite Model (80 MB) to port onto phone

	Evaluation Set						
	Day 1	Day 2	Day 3	Day 3	Day 4		
Model	(CH)	(CH)	(SDH)	(EH)	(CH)		
SSD [1]	67.2	81.7	74.3	54.7	73.6		
Ours (TFLite)	71.8	81.8	74.0	68.8	77.9		
Ours (Full TF)	73.1	82.3	74.7	69.8	79.0		
Δ Ours (Full TF) - Ours (TFLite)	+1.3	+0.5	+0.7	+1.0	+1.1		
Δ Ours (TFLite) - SSD	+4.6	+0.1	-0.3	+14.1	+4.3		

• Little loss from TF model to TFLite from conversion

Tensorflow Model (150 MB) converted to TFLite Model (80 MB) to port onto phone

	Evaluation Set						
	Day 1	Day 2	Day 3	Day 3	Day 4		
Model	(CH)	(CH)	(SDH)	(EH)	(CH)		
SSD [1]	67.2	81.7	74.3	54.7	73.6		
Ours (TFLite)	71.8	81.8	74.0	68.8	77.9		
Ours (Full TF)	73.1	82.3	74.7	69.8	79.0		
Δ Ours (Full TF) - Ours (TFLite)	+1.3	+0.5	+0.7	+1.0	+1.1		
Δ Ours (TFLite) - SSD	+4.6	+0.1	-0.3	+14.1	+4.3		

- Little loss from TF model to TFLite from conversion
- TFLite model outperforms SSD by up to 14 points

Comparison of Offline Training Times

	Offline Training		Online Training		Online Inference	
	SSD	Ours	SSD	Ours	SSD	Ours
Data Set	(Kostoeva et al.)	(Mode 4)	[1]		[1]	
Day 0	18hr 29m	5hr 27m	-	-	-	-
Day 1	20hr 11m	4hr 17m	-	1.13 <i>s</i>	0.084 <i>s</i>	0.064 <i>s</i>
Day 2	20hr 56m	3hr 4m	-	1.06 <i>s</i>	0.082 <i>s</i>	0.041 <i>s</i>
Day 3	22hr 40m	4hr 13m	-	1.00 <i>s</i>	0.081 <i>s</i>	0.050 s
Day 4	-	4hr 9m	-	1.21 <i>s</i>	0.084 <i>s</i>	0.034 <i>s</i>

- Up to 7x speedup in offline training times
- Up to 2x speedup in online inference times

Conclusions & Future Work

- Proposed Online Learning Method for Asset Detection:
 - Better Accuracy
 - Improved Latencies
 - Real-time Learning
 - Shorter Offline Training time

• Future Work:

- Extend to hundreds of asset categories \rightarrow scalability
- Adapt to previously unseen asset classes in real-time