AUDIO-VISUAL FUSION AND CONDITIONING WITH NEURAL NETWORKS FOR EVENT RECOGNITION

Mathilde Brousmiche ^{1 2} Jean Rouat ²

Stéphane Dupont¹

¹Numediart Institute University of Mons Belgium

²Necotis Lab University of Sherbrooke Canada

MLSP, October 2019

<ロ> (四) (四) (三) (三) (三)

æ

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Multimodality

M. Brousmiche

UMons, UdeS

イロト イポト イヨト イヨト

Audio-visual Conditioning

Conclusion

Problem setting : Audio-visual Event Classification

Subset of kinetics¹:

blowing_nose

crying

finger_snapping

playing_drums

playing_guitar

sneezing

using_computer

whistling

vawning

¹W. Kay et al. "The kinetics human action video dataset". In: arXiv preprint arXiv:1705.06950 (2017). = nar

M Brousmiche

UMons. UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Problem setting : Audio-visual Event Classification

- ▲日 > ▲国 > ▲国 > ▲国 > ④ ▲ ◎

M. Brousmiche

UMons, UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Problem setting : Audio-visual Event Classification

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Problem setting : Audio-visual Event Classification

M. Brousmiche

UMons, UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Problem setting : Audio-visual Event Classification

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Techniques of fusion

 ¹Y. Gao et al. "Compact bilinear pooling". In: IEEE Proc. CVPR. 2016, pp. 317–326.

 M. Brousmiche

 UMons, Udgs

 AUDIO-VISUAL FUSION AND CONDITIONING WITH NEURAL NETWORKS FOR EVENT RECOGNITION

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Fusion levels : Early fusion

M. Brousmiche

UMons, UdeS

-

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Fusion levels : Middle fusion

M. Brousmiche

UMons, UdeS

- E

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Fusion levels : Late fusion

M. Brousmiche

UMons, UdeS

- (E

Audio-visual Fusion

Audio-visual Conditioning

Image: A math a math

Conclusion

Audio-visual Fusion efficiency

M. Brousmiche

UMons, UdeS

∃ >

Audio-visual Fusion

Audio-visual Conditioning •00000

Image: A math a math

Conclusion

What is conditioning ?

M. Brousmiche

UMons, UdeS

< ∃→

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

What is conditioning ?

M. Brousmiche

UMons, UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Modalities conditioning with a attention model²

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Proposal : Visual feature map modulation with audio information

- イロト イ団ト イヨト イヨト ヨー わえぐ

M. Brousmiche

UMons, UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Proposal : Visual feature map modulation with audio information

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Feature-wise Linear Modulation (FiLM)³

$$\beta_{i,c}$$
 and $\beta_{i,c}$ modulate the activations $\mathbf{F}_{i,c}$ is $FiLM(\mathbf{F}_{i,c}|\gamma_{i,c},\beta_{i,c}) = \gamma_{i,c}\mathbf{F}_{i,c} + \beta_{i,c}$

where

$$\gamma_{i,c} = f_c(x_i) \qquad \beta_{i,c} = h_c(x_i)$$

f and h can be arbitrary functions

³E. Perez et al. "Film: Visual reasoning with a general conditioning layer".

In: Thirty-Second AAAI Conference on Artificial Intelligence 2018 + < = + =

M. Brousmiche

UMons, UdeS

Audio-visual Conditioning

Conclusion

Contribution of FiLM in audio-visual event classification

Accuracy [%]	Image	Sound
Without FiLM modulation	61.00 ± 5.11	66.67 ± 4.60
With FiLM modulation	75.75 ± 5.35	75.75 ± 3.14

M. Brousmiche

UMons, UdeS

<ロ> <四> <四> <三</p>

Audio-visual Conditioning

< 口 > < 同

Conclusion

Better embedding clustering with FiLM

M. Brousmiche

UMons, UdeS

Audio-visual Conditioning

Conclusion

Better embedding clustering with FiLM

M. Brousmiche

UMons, UdeS

Audio-visual Conditioning

Conclusion

Better embedding clustering with FiLM

M. Brousmiche

UMons, UdeS

Audio-visual Conditioning

Conclusion

Better embedding clustering with FiLM

M. Brousmiche

UMons, UdeS

Audio-visual Fusion

Audio-visual Conditioning

Conclusion •00

Conclusion

- Relevant information for event recognition exists both in visual and audio modalities.
- Exploiting both audio and visual modalities through fusion or conditioning improves event recognition performance
- The use of FiLM layers allows exploiting both audio and visual modalities without an explicit implementation of the fusion

M. Brousmiche

UMons, UdeS

イロト イボト イヨト イヨト

Audio-visual Fusion

Audio-visual Conditioning

Conclusion

Future Work

- Test another conditioning method based on multimodal Long Short-Term Memory (LSTM) neural networks
- Analyze the robustness of all methods in the presence of noise as well as in the absence of one modality.

M. Brousmiche

UMons, UdeS

イロト イボト イヨト イヨト

Introducti	on
00	

Thank you !

- * ロ * * 御 * * 言 * * 言 * * 言 * * の < や

M. Brousmiche

UMons, UdeS