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Passive Learning: Random Training
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Active Learning: Interaction with an Expert
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Main Objective

How to choose examples
interactively to learn faster than

passive learning?
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Existing Solutions

Disagreement Region
DIS (Ht ) = {x ∈ X : ∃f , f̃ ∈ Ht, f (x) , f̃ (x)}
Querying features in DIS (Ht ) will reduce the candidate set
Ht+1: [CAL1994], A2 [BBL2006]
Label complexity: exp

(
− n

dθc

)
, where θc is the Disagreement

Coefficient.

High computational and label complexity (θc can be very
large)

Information Theoretic measures
Maximum Uncertainty (MU): maxX H(Y |X,Dtrain)

Maximum mutual information [HHGL2011]:
maxX I(Y , θ |X,Dtrain)

Different methods based on Fisher Information [SALED2017]
Heuristic criteria.
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Information Theoretic
Minimax Active Learning
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Mathematical Setup

Learning Setting

Examples (x, y ) are drawn from some family of hypotheses
p(y |x, θ) where θ ∈ Θ.
Test feature drawn from p(x) - stochastic setting
Labeling budget of N queries.
Probabilistic learners: q (y |x).
Log-loss cost function: − log (q (y |x)).

Informal Objective

Sequentially select features based on past examples (xN, yN )

and construct a learner, q
(
y |x, xN, yN

)
, which will perform well.
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Mathematical Setup

Optimal Learner
Similarly to the statistical learning approach, we would like to
find a learner q̂(y |x) which minimizes:

q̂(y |x) = argmin
q

Ep(y |x,θ) (− log q(y |x))

Clearly this implies that q̂(y |x) = p(y |x, θ) in KL sense.

Problem
Unfortunately, the learner has no access to the true θ.
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Minimax Active Learning Formulation

Find a sequential selection strategy
{
φ(xt |x t−1, y t−1)

}N
t=1 which

optimizes the minimax regret to the optimal learner for a random
test point (x, y ):

R = min
{φt }

N
t=1

min
q

max
θ

E
{
log

(
p (y |x, θ)

q
(
y |x, xN, yN

) )}
where xN, yN are the training examples.
The expectation is performed over the joint probability:

p
(
y, x, xN, yN |θ

)
= p (y |θ, x)ΠN

t=1p (yt |xt, θ) φ
(
xt |x t−1, y t−1

)
p(x |θ)
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Capacity Redundancy Theorem for Active Learning

Theorem [SF19]
The minimax active learning problem is equivalent to the
following criterion:

R = min
{φ(xt |x t−1,y t−1)}

N
t=1

CY ;θ |X,Y N,X N

where,
CY ;θ |X,Y N,X N = max

π(θ)
I
(
Y ; θ |X,Y N,X N

)
and the optimal learner is:

q∗
(
y |x, xN, yN

)
=

∑
θ

p
(
θ |yN, xN

)
p (y |θ, x)
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Exploitation - Exploration Trade-Off Interpretation

Our new Active Learning criterion can be upper-bounded by:

I
(
Y ; θ |X,Y N,X N

)
≤ H (Y |X )+

N∑
t=1

H
(
Yt |X t,Y t−1,X,Y

)
−H

(
Yt |X t,Y t−1

)
H

(
Yt |X t,Y t−1

)
can be viewed as "exploration" and greedy

maximization of it is equivalent to MU.
H

(
Yt |X t,Y t−1,X,Y

)
can be viewed as "exploitation".

Minimizing the difference means that there is a fundamental
trade-off between exploration and exploitation in our criterion.
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Active Learning of Linear
Separators with Label

Noise
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One Dimensional Linear Separator with Noisy Oracle
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Possible Solution for Minimax Active Learning

The Idea is to look at the problem as communicating θ0 over
a noisy channel.
Pass as much information bits on θ0 using few channel uses
and correctly decode θ0.
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Posterior Matching Scheme

Capacity achieving scheme proposed by Shayevitz and
Feder (2007), suitable for any memory-less channel P(Y |V ).
The estimation error on θ0 drops exponentially fast.
Next symbol vt is computed via:

vt = F−1
V

(
Fθ0 |Y t−1

(
θ0 |y t−1

))

16 / 30



Introduction Minimax Active Learning Linear Separators Summary

Posterior Matching Scheme

For a binary valued vt , with V ∼ Ber (p), the PM scheme
reduces to:

vt =

{
1, if θ0 > F−1

θ |y t−1 (p)

0, otherwise

where Ber (p) is the capacity achieving distribution for the
noisy channel.
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Active Learning with Noisy Labeler - 1d

If we choose φ
(
xt |x t−1, y t−1

)
= F−1

θ |y t−1 (p), we achieve capacity!
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High Dimensional Linear Separators

Features x ∈ Rd satisfy ‖x ‖ ≤ R with uniform p(x).
The hypotheses class contains all possible hyper-planes with
normal vector w and threshold b.
The relation between feature x and clean label v is defined
as,

p(v|x,w,b) =

{
1 if wT x > b
0 otherwise

v passes through a discrete memory-less channel p(y |v )
and produces the noisy label - y .

19 / 30



Introduction Minimax Active Learning Linear Separators Summary

Successive Posterior Matching (SPM)

SPM Idea
True classifier is fully described by its normal vector.
The idea is to successively localize the spherical coordinates
of the normal vector w using Posterior Matching.
Each coordinate lives on the arc: θi ∈ [0, π].
The intersection of the hyper-plane and the arc is the barrier
between classification regions.
For each spherical coordinate we have a noisy one
dimensional barrier problem.
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Classifier
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PM on Azimuth
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Estimated Barrier between Classification Regions
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PM on Elevation
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Estimated Barrier between Classification Regions
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Estimated Normal Vector
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Active Learning Criterion with SPM selection

Theorem [SF19]

For the d dimensional binary linear separator hypotheses class
with discrete memory-less label noise and uniform p(x), the
SPM algorithm produces a selection policy such that,

I
(
θ;Y |X,X N,Y N

)
≈ O

(
2−

N
d CChannel

)
where CChannel is the channel capacity.
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SPM: Error probability for BSC label noise
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Summary

Minimax Active Learning

Capacity Redundancy theorem for minimax active learning
Optimal learner for minimax active learning.

Active Learning of Linear Separators

Near-optimal, low complexity, algorithm for active learning of
Linear Separators with various noise models.
Explicit expression for the decay factor of the Mutual
Information.
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Thank You!
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