Minimax Active Learning via Minimal Model Capacity

Shachar Shayovitz and Meir Feder

IEEE International Workshop on Machine Learning for Signal Processing 2019

Outline

- Introduction
 - Passive learning
 - Active learning
 - Existing solutions

Outline

- Introduction
 - Passive learning
 - Active learning
 - Existing solutions
- Minimax active learning

Outline

- Introduction
 - Passive learning
 - Active learning
 - Existing solutions
- Minimax active learning
- Low complexity algorithm for active learning of noisy linear separators

Linear Separators

Summary

Passive Learning: Random Training

Summary

Active Learning: Interaction with an Expert

প্র 4/30

Main Objective

How to choose examples interactively to learn faster than passive learning?

• Disagreement Region

- $DIS(H_t) = \{x \in X : \exists f, \tilde{f} \in H_t, f(x) \neq \tilde{f}(x)\}$
- Querying features in *DIS*(*H*_t) will reduce the candidate set *H*_{t+1}: [CAL1994], *A*² [BBL2006]
- Label complexity: $exp\left(-\frac{n}{d\theta_c}\right)$, where θ_c is the Disagreement Coefficient.

Disagreement Region

- $DIS(H_t) = \{x \in X : \exists f, \tilde{f} \in H_t, f(x) \neq \tilde{f}(x)\}$
- Querying features in *DIS*(*H*_t) will reduce the candidate set *H*_{t+1}: [CAL1994], *A*² [BBL2006]
- Label complexity: $exp\left(-\frac{n}{d\theta_c}\right)$, where θ_c is the Disagreement Coefficient.
- High computational and label complexity (θ_c can be very large)

Disagreement Region

- $DIS(H_t) = \{x \in X : \exists f, \tilde{f} \in H_t, f(x) \neq \tilde{f}(x)\}$
- Querying features in *DIS*(*H*_t) will reduce the candidate set *H*_{t+1}: [CAL1994], *A*² [BBL2006]
- Label complexity: $exp\left(-\frac{n}{d\theta_c}\right)$, where θ_c is the Disagreement Coefficient.
- High computational and label complexity (θ_c can be very large)
- Information Theoretic measures
 - Maximum Uncertainty (MU): max_X H(Y|X, D_{train})
 - Maximum mutual information [HHGL2011]: ma×_X I(Y, θ|X, D_{train})
 - Different methods based on Fisher Information [SALED2017]

Disagreement Region

- $DIS(H_t) = \{x \in X : \exists f, \tilde{f} \in H_t, f(x) \neq \tilde{f}(x)\}$
- Querying features in *DIS*(*H*_t) will reduce the candidate set *H*_{t+1}: [CAL1994], *A*² [BBL2006]
- Label complexity: $exp\left(-\frac{n}{d\theta_c}\right)$, where θ_c is the Disagreement Coefficient.
- High computational and label complexity (θ_c can be very large)
- Information Theoretic measures
 - Maximum Uncertainty (MU): max_X H(Y|X, D_{train})
 - Maximum mutual information [HHGL2011]: max_X I(Y, θ|X, D_{train})
 - Different methods based on Fisher Information [SALED2017]
 - Heuristic criteria.

Information Theoretic Minimax Active Learning

◆ロ → < □ → < 亘 → < 亘 → < 亘 → ○ Q (○ 7/30)

Learning Setting

- Examples (x, y) are drawn from some family of hypotheses p(y|x, θ) where θ ∈ Θ.
- Test feature drawn from *p*(*x*) stochastic setting
- Labeling budget of N queries.
- Probabilistic learners: q(y|x).
- Log-loss cost function: $-\log(q(y|x))$.

Learning Setting

- Examples (x, y) are drawn from some family of hypotheses $p(y|x, \theta)$ where $\theta \in \Theta$.
- Test feature drawn from p(x) stochastic setting
- Labeling budget of N queries.
- Probabilistic learners: q(y|x).
- Log-loss cost function: $-\log(q(y|x))$.

Informal Objective

Sequentially select features based on past examples (x^N, y^N) and construct a learner, $q(y|x, x^N, y^N)$, which will perform well.

Optimal Learner

 Similarly to the statistical learning approach, we would like to find a learner q(y|x) which minimizes:

$$\hat{q}(y|x) = \arg\min_{q} E_{p(y|x,\theta)} \left(-\log q(y|x) \right)$$

• Clearly this implies that $\hat{q}(y|x) = p(y|x, \theta)$ in KL sense.

Optimal Learner

 Similarly to the statistical learning approach, we would like to find a learner q(y|x) which minimizes:

$$\hat{q}(y|x) = \arg\min_{q} E_{p(y|x,\theta)} \left(-\log q(y|x) \right)$$

• Clearly this implies that $\hat{q}(y|x) = p(y|x, \theta)$ in KL sense.

Problem

• Unfortunately, the learner has no access to the true θ .

Minimax Active Learning Formulation

• Find a sequential selection strategy $\{\phi(x_t|x^{t-1}, y^{t-1})\}_{t=1}^N$ which optimizes the minimax regret to the optimal learner for a random test point (x, y):

$$R = \min_{\{\phi_t\}_{t=1}^N} \min_{q} \max_{\theta} E\left\{ \log\left(\frac{p(y|x,\theta)}{q(y|x,x^N,y^N)}\right) \right\}$$

where x^N , y^N are the training examples.

• The expectation is performed over the joint probability:

$$p\left(y, x, x^{N}, y^{N}|\theta\right) = p\left(y|\theta, x\right) \prod_{t=1}^{N} p\left(y_{t}|x_{t}, \theta\right) \phi\left(x_{t}|x^{t-1}, y^{t-1}\right) p(x|\theta)$$

Capacity Redundancy Theorem for Active Learning

Theorem [SF19]

The minimax active learning problem is equivalent to the following criterion:

$$R = \min_{\{\phi(x_t | x^{t-1}, y^{t-1})\}_{t=1}^N} C_{Y;\theta|X, Y^N, X^N}$$

where,

$$C_{Y;\theta|X,Y^N,X^N} = \max_{\pi(\theta)} I\left(Y;\theta|X,Y^N,X^N\right)$$

and the optimal learner is:

$$q^{*}\left(y|x,x^{N}\!,y^{N}\right) = \sum_{\theta} p\left(\theta|y^{N}\!,x^{N}\right) p\left(y|\theta,x\right)$$

・ロ・・聞・・叫・ し・ し・

Exploitation - Exploration Trade-Off Interpretation

• Our new Active Learning criterion can be upper-bounded by:

$$I\left(Y;\theta|X,Y^{N},X^{N}\right) \leq H(Y|X) + \sum_{t=1}^{N} H\left(Y_{t}|X^{t},Y^{t-1},X,Y\right) - H\left(Y_{t}|X^{t},Y^{t-1}\right)$$

- H(Y_t|X^t, Y^{t-1}) can be viewed as "exploration" and greedy maximization of it is equivalent to MU.
- $H(Y_t|X^t, Y^{t-1}, X, Y)$ can be viewed as "exploitation".
- Minimizing the difference means that there is a fundamental trade-off between exploration and exploitation in our criterion.

Active Learning of Linear Separators with Label Noise

One Dimensional Linear Separator with Noisy Oracle

Possible Solution for Minimax Active Learning

- The Idea is to look at the problem as communicating θ₀ over a noisy channel.
- Pass as much information bits on θ_0 using few channel uses and correctly decode θ_0 .

Posterior Matching Scheme

- Capacity achieving scheme proposed by Shayevitz and Feder (2007), suitable for any memory-less channel P(Y|V).
- The estimation error on θ_0 drops exponentially fast.
- Next symbol *v_t* is computed via:

$$\boldsymbol{v}_{t} = \boldsymbol{F}_{\boldsymbol{V}}^{-1} \left(\boldsymbol{F}_{\boldsymbol{\theta}_{0} | \boldsymbol{Y}^{t-1}} \left(\boldsymbol{\theta}_{0} | \boldsymbol{y}^{t-1} \right) \right)$$

Posterior Matching Scheme

For a binary valued v_t, with V ~ Ber(p), the PM scheme reduces to:

$$v_{t} = \begin{cases} 1, & \text{if } \theta_{0} > F_{\theta|y^{t-1}}^{-1}(p) \\ 0, & \text{otherwise} \end{cases}$$

• where *Ber*(*p*) is the capacity achieving distribution for the noisy channel.

Active Learning with Noisy Labeler - 1d

If we choose
$$\phi\left(x_t|x^{t-1}, y^{t-1}\right) = F_{\theta|y^{t-1}}^{-1}(p)$$
, we achieve capacity!

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 18/30

High Dimensional Linear Separators

- Features $\underline{x} \in \mathbb{R}^d$ satisfy $||\underline{x}|| \le R$ with uniform $p(\underline{x})$.
- The hypotheses class contains all possible hyper-planes with normal vector <u>w</u> and threshold <u>b</u>.
- The relation between feature <u>x</u> and **clean** label v is defined as,

$$p(v|\underline{x},\underline{w},b) = \begin{cases} 1 & \text{if } \underline{w}^T \underline{x} > b \\ 0 & \text{otherwise} \end{cases}$$

 v passes through a discrete memory-less channel p(y|v) and produces the noisy label - y.

Successive Posterior Matching (SPM)

SPM Idea

- True classifier is fully described by its normal vector.
- The idea is to successively localize the spherical coordinates of the normal vector <u>w</u> using Posterior Matching.
- Each coordinate lives on the arc: $\theta_i \in [0, \pi]$.
- The intersection of the hyper-plane and the arc is the barrier between classification regions.
- For each spherical coordinate we have a noisy one dimensional barrier problem.

Classifier

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへ⊙

PM on Azimuth

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Summary

Estimated Barrier between Classification Regions

< □ > < □ > < 三 > < 三 > < 三 > の < ⊙

PM on Elevation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Summary

Estimated Barrier between Classification Regions

< □ > < □ > < 三 > < 三 > < 三 > の < ⊙

Linear Separators

Estimated Normal Vector

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Summary

27/30

Active Learning Criterion with SPM selection

Theorem [SF19]

For the *d* dimensional binary linear separator hypotheses class with discrete memory-less label noise and uniform $p(\underline{x})$, the SPM algorithm produces a selection policy such that,

$$I\left(heta; \mathbf{Y}|\underline{X}, \underline{X}^{N}, \mathbf{Y}^{N}
ight) pprox O\left(2^{-rac{N}{d}C_{Channel}}
ight)$$

where C_{Channel} is the channel capacity.

SPM: Error probability for BSC label noise

Summary

Minimax Active Learning

- Capacity Redundancy theorem for minimax active learning
- Optimal learner for minimax active learning.

Active Learning of Linear Separators

- Near-optimal, low complexity, algorithm for active learning of Linear Separators with various noise models.
- Explicit expression for the decay factor of the Mutual Information.

Thank You!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □