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Introduction

Passive Learning: Random Training

Unlabelled Dataset
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Introduction

Active Learning: Interaction with an Expert

Unlabelled Dataset

Sequential Process!
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Introduction

Main Objective

How to choose examples
interactively to learn faster than
passive learning?



Introduction

Existing Solutions

@ Disagreement Region

o DIS(Hy) = {x e X :3f feH,f(x)=+f(x)
e Querying features in DIS (H;) will reduce the candidate set
Hy.1: [CAL1994], A% [BBL2006]

o Label complexity: exp (—digc), where 6. is the Disagreement
Coefficient.
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Minimax Active Learning

Mathematical Setup

Learning Setting

@ Examples (x, y) are drawn from some family of hypotheses
p(y|x, 8) where 6 € 0.

@ Test feature drawn from p(x) - stochastic setting
@ Labeling budget of N queries.

@ Probabilistic learners: g (y|x).

@ Log-loss cost function: —log (q (y|x)).
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Learning Setting

@ Examples (x, y) are drawn from some family of hypotheses
p(y|x, 8) where 6 € 0.

@ Test feature drawn from p(x) - stochastic setting
@ Labeling budget of N queries.

@ Probabilistic learners: g (y|x).

@ Log-loss cost function: —log (q (y|x)).

Informal Objective

Sequentially select features based on past examples (xV, yV)
and construct a learner, q (y|x, xN, y’V), which will perform well.




Minimax Active Learning

Mathematical Setup

Optimal Learner

@ Similarly to the statistical learning approach, we would like to
find a learner g(y|x) which minimizes:

qlylx) = argqmin Ep(yix.0) (= log q(y|x))

@ Clearly this implies that g(y|x) = p(y|x, 6) in KL sense.
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Mathematical Setup
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@ Similarly to the statistical learning approach, we would like to
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@ Clearly this implies that g(y|x) = p(y|x, 6) in KL sense.

v

Problem
@ Unfortunately, the learner has no access to the true 6.




Minimax Active Learning

Minimax Active Learning Formulation

@ Find a sequential selection strategy {gb(x,|xf‘1,yt‘1)}ﬁ1 which
optimizes the minimax regret to the optimal learner for a random
test point (x, y):

R = min min maxE{Iog(L,’VQ)N)}
{¢t}ﬁ1 q o q(.ylxvx ’y)

where xN, yN are the training examples.
@ The expectation is performed over the joint probability:

p (v x XM yM0) = p (160 T p (ilxe,6) ¢ (xelx', v~ ) pixle)
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Minimax Active Learning

Capacity Redundancy Theorem for Active Learning

Theorem [SF19]

The minimax active learning problem is equivalent to the
following criterion:

R= min N CY;9|X,YN,XN
{p0elxt=1ytD},

where,
CY;0|X,YN,XN = m(ag>)< / (Y, 9|X, YN, XN)

and the optimal learner is:

q" (yix x"yN) = 3" p(oly™.xN) p(yie, )
0
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Minimax Active Learning

Exploitation - Exploration Trade-Off Interpretation

@ Our new Active Learning criterion can be upper-bounded by:

I(Y; 01X, YN, xN) < H(Y|X)+ZN: H(Y,|X’, Y-t X, Y)—H (Y,|xf, YH)
t=1

o H (Y,|X t YH) can be viewed as "exploration" and greedy
maximization of it is equivalent to MU.
° H(Y,|X’, yt=1, X, Y) can be viewed as "exploitation".

@ Minimizing the difference means that there is a fundamental
trade-off between exploration and exploitation in our criterion.
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Active Learning of Linear
Separators with Label
Noise



Linear Separators

One Dimensional Linear Separator with Noisy Oracle
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Linear Separators

Possible Solution for Minimax Active Learning

@ The Idea is to look at the problem as communicating 6y over

a noisy channel.
@ Pass as much information bits on 6y using few channel uses

and correctly decode 6.

1
| Transmitter

Noisy Channel Receiver
- T

Noiseless Feedback
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Linear Separators

Posterior Matching Scheme

@ Capacity achieving scheme proposed by Shayevitz and
Feder (2007), suitable for any memory-less channel P(Y|V).

@ The estimation error on 6y drops exponentially fast.
@ Next symbol v; is computed via:

ve = F! (F90|y1—1 (90|y"1))

Transmitter Noisy Channel Receiver

6, =argmax, p(6,1y")

v=1(0.07)

Noiseless Feedback
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Linear Separators

Posterior Matching Scheme

@ For a binary valued v, with V ~ Ber(p), the PM scheme
reduces to:

: -1
Ve = 1’ If 00 > Felyt—1 (p)
0, otherwise

@ where Ber(p) is the capacity achieving distribution for the
noisy channel.
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Linear Separators

Active Learning with Noisy Labeler - 1d

If we choose ¢ (xtle, y"1) = F0_|1yf-‘ (p), we achieve capacity!

Transmitter
Receiver

Ve
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Linear Separators

High Dimensional Linear Separators

@ Features x € RY satisfy ||x|| < R with uniform p(x).

@ The hypotheses class contains all possible hyper-planes with
normal vector w and threshold b.

@ The relation between feature x and clean label v is defined
as,

1 ifwix>b

0 otherwise

p(v|x,w,b) = {

@ v passes through a discrete memory-less channel p(y|v)
and produces the noisy label - y.
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Linear Separators

Successive Posterior Matching (SPM)

SPM Idea
@ True classifier is fully described by its normal vector.

@ The idea is to successively localize the spherical coordinates
of the normal vector w using Posterior Matching.

@ Each coordinate lives on the arc: 6; € [0, 7].

@ The intersection of the hyper-plane and the arc is the barrier
between classification regions.

@ For each spherical coordinate we have a noisy one
dimensional barrier problem.
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PM on Azimuth
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Linear Separators

Estimated Barrier between Classification Regions
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Linear Separators

PM on Elevation
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Linear Separators

Estimated Barrier between Classification Regions
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Linear Separators

Estimated Normal Vector
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Linear Separators

Active Learning Criterion with SPM selection

Theorem [SF19]

For the d dimensional binary linear separator hypotheses class
with discrete memory-less label noise and uniform p(x), the
SPM algorithm produces a selection policy such that,

1(9; Y| X, )_(N, YN) ~0 (2_%CChannel)

where Cchanner i the channel capacity.
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Linear Separators

SPM: Error probability for BSC label noise
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Summary

Summary

Minimax Active Learning
@ Capacity Redundancy theorem for minimax active learning
@ Optimal learner for minimax active learning.

Active Learning of Linear Separators

@ Near-optimal, low complexity, algorithm for active learning of
Linear Separators with various noise models.

@ Explicit expression for the decay factor of the Mutual
Information.
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Thank You!
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