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1- Problem Statement 3- EEG Data-set
» Problem: EEG signals suffer from high We evaluate our method on the CHB-MIT [1] dataset. In this study, for R
dimensionality. This makes the signal cross-patient detection, the goal is to detect whether a 30 second segment of X = Zﬂr obroc,
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* Providing a comp_re enS'V_e COmparison | _ E) - B of super-slices. Each super-slice Is a superposition of all slices
and evaluation of different t|me-frequency Time-frequency representations of 1 second of EEG signal using different methods including: and weights are driven from Matrix P = (CT¢)~1CT. For
representation approaches for CNN-based A) smoothed-WV (SWV), B) Gaussian kernel (GK), C) Wigner—Ville (WV), example, the first super-slice is summation of all slices
EEG signal analysis. D) spectrogram (SPEC), E) modified-B (MB), and F) separable kernel (SPEK). weighted by the Tirst row of P. X 5 indicates mod-3 product.
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Batch Size 40 Accuracy of EEG signal classification for different TF methods and different CNN parameters.
Parameters are different number of layers, and filter sizes are 2X2 (FS 2) and 3°X 3 (FS 3).
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Conv+Rel. U Conv+ReLl.U Conv+RelLU Conv+Rel.U connected Comparison of the classification accuracy of cross-patient seizure detection on

CHB-MIT EEG dataset. Each box plot shows 10 iterations of 10 cross
validation of the predictive model for the associated method.
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