The Graph FRI Framework–Spline Wavelet Theory and Sampling on Circulant Graphs

Madeleine S. Kotzagiannidis, Pier Luigi Dragotti Imperial College London

ICASSP 2016, Special Session SS11

Shanghai, March 2016

Table of Contents

Preliminaries

- Spline Wavelets on Circulant Graphs
 - Prior Work
 - Graph E-Spline Wavelets
 - Splines on Graphs

Sampling Theory on Circulant Graphs

- Graph-FRI
- Graph Coarsening

Conclusion

Sparsity on Graphs: General Motivation and Objectives

Sparsity on Graphs: General Motivation and Objectives

- Explore sparsity on circulant graphs, while demonstrating intuitive and concrete links to SP in the Euclidean domain
- Circulant graphs are LSI & circulant matrices are diagonalizable by the DFT-matrix

Sparsity on Graphs: General Motivation and Objectives

- Explore sparsity on circulant graphs, while demonstrating intuitive and concrete links to SP in the Euclidean domain
- Circulant graphs are LSI & circulant matrices are diagonalizable by the DFT-matrix
- Wavelet Analysis: Circulant Graph (E-)Spline Wavelet Transforms with reproduction & annihilation properties
- > Sparse Sampling: Perfect recovery of sampled (wavelet-)sparse graph signals on coarsened graphs
- We can generalize operations to arbitrary graphs via approximation schemes

Signal Processing on Graphs

A graph G = (V, E), with |V| = N, is described via a vertex set $V = \{V_0, ..., V_{N-1}\}$, and an edge set $E = \{E_0, ..., E_{M-1}\}$

The connectedness of G is represented by adjacency matrix A, where

$$\mathbf{A}_{i,j} = \left\{ \begin{array}{ll} 1, & \text{if } i \text{ and } j \text{ are adjacent} & (i \neq j) \\ 0, & \text{otherwise} \end{array} \right.$$

The degree matrix D of G is given by

$$\mathbf{D}_{i,j} = \begin{cases} \sum_{j} \mathbf{A}_{i,j}, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

- > The non-normalized graph Laplacian is given by L = D A
- We consider undirected, and (un-)weighted connected graphs without self-loops

Signal Processing on Graphs

A graph G = (V, E), with |V| = N, is described via a vertex set $V = \{V_0, ..., V_{N-1}\}$, and an edge set $E = \{E_0, ..., E_{M-1}\}$

The connectedness of G is represented by adjacency matrix A, where

$$\mathbf{A}_{i,j} = \left\{ \begin{array}{ll} 1, & \text{if } i \text{ and } j \text{ are adjacent} & (i \neq j) \\ 0, & \text{otherwise} \end{array} \right.$$

The degree matrix D of G is given by

$$\mathbf{D}_{i,j} = \begin{cases} \sum_{j} \mathbf{A}_{i,j}, & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}$$

- The non-normalized graph Laplacian is given by L = D A
- We consider undirected, and (un-)weighted connected graphs without self-loops
- A graph signal is a scalar function $\mathbf{x}: V \to \mathbb{C}$ defined on G such that x(V) is the sample value of $\mathbf{x} \in \mathbb{C}^N$ at vertex V
- ▶ L has a complete set of orthonormal eigenvectors $\{\mathbf{u}_l\}_{l=0,...,N-1}$ with eigenvalues 0 = $\lambda_0 < \lambda_1 \leq ... \leq \lambda_{N-1}$.
- ▶ The Graph Fourier Transform (GFT) of a graph signal x on G is given by $\mathbf{X}^{G} = \mathbf{U}^{H}\mathbf{x}$

Circulant Graph Theory

Definition

- A graph G is circulant with respect to a generating set $S = \{s_1, \ldots, s_M\}$, with $0 < s_k \le N/2$ if there exists an edge between nodes $(i, (i \pm s_k)_N)$, for every $s_k \in S$. Alternatively, a graph is circulant if its graph Laplacian matrix L is circulant.
- ▶ We can express L with first row $[l_0 \dots l_{N-1}]$, via its representer polynomial $l(z) = \sum_{i=0}^{N-1} l_i z^i$, whereby L = $\sum_{i=0}^{N-1} l_i \Pi^i$ for circulant permutation matrix Π .

> The GFT of a circulant graph can be represented as a permutation of the DFT matrix

Circulant Graph Theory

Definition

- A graph G is circulant with respect to a generating set $S = \{s_1, \ldots, s_M\}$, with $0 < s_k \le N/2$ if there exists an edge between nodes $(i, (i \pm s_k)_N)$, for every $s_k \in S$. Alternatively, a graph is circulant if its graph Laplacian matrix L is circulant.
- ▶ We can express L with first row $[l_0 \dots l_{N-1}]$, via its representer polynomial $l(z) = \sum_{i=0}^{N-1} l_i z^i$, whereby L = $\sum_{i=0}^{N-1} l_i \Pi^i$ for circulant permutation matrix Π .

- > The GFT of a circulant graph can be represented as a permutation of the DFT matrix
- Prior research [Ekambaram et al, '13]: fundamental SP operations on circulant graphs, incl. sampling & reconnection strategies, multiscale wavelet analysis (spline-like graph wavelet filterbank)

Figure 1: Downsampling w.r.t. s = 1 for $S = \{1, 2\}$

Prior Work: Graph Spline Wavelet Transform

Lemma 1. For an undirected, circulant graph G = (V, E), with |V| = N, the representer polynomial l(z) = l₀ + ∑_{i=1}^M l_i(zⁱ + z⁻ⁱ) of graph Laplacian L, with first row [l₀ l₁ l₂ ... l₂ l₁], has 2 vanishing moments. Thus, L annihilates up to linear polynomial graph signals, subject to a border effect determined by bandwidth M of L, provided 2M < N.</p>

M. S. Kotzagiannidis, P. L. Dragotti, "Higher-order graph wavelets and sparsity on circulant graphs", Proc. SPIE, Wavelets and Sparsity XVI, 2015

Prior Work: Graph Spline Wavelet Transform

Lemma 1. For an undirected, circulant graph G = (V, E), with |V| = N, the representer polynomial I(z) = l₀ + ∑_{i=1}^M l_i(zⁱ + z⁻ⁱ) of graph Laplacian L, with first row [l₀ l₁ l₂ ... l₂ l₁], has 2 vanishing moments. Thus, L annihilates up to linear polynomial graph signals, subject to a border effect determined by bandwidth M of L, provided 2M < N.</p>

Theorem 1

The higher-order graph-spline wavelet transform (HGSWT), for an undirected, connected circulant graph G, with adjacency matrix **A** and degree d per node, composed of the low-and high-pass filters

$$\mathbf{H}_{LP} = \frac{1}{2^k} \left(\mathbf{I}_N + \frac{\mathbf{A}}{d} \right)^k \tag{1}$$

$$\mathbf{H}_{HP} = \frac{1}{2^k} \left(\mathbf{I}_N - \frac{\mathbf{A}}{d} \right)^k = \frac{\mathbf{L}^k}{(2d)^k} \tag{2}$$

with 2k vanishing moments, is invertible as long as at least one node retains the lowpass component.

Proof: We can demonstrate that the nullspace of

$$\frac{1}{2^{k}} \left(\sum_{j \in \mathbb{Z}} \binom{k}{2j} \left(\frac{\mathbf{A}}{d} \right)^{2j} + \mathbf{K} \sum_{j \in \mathbb{Z}} \binom{k}{2j+1} \left(\frac{\mathbf{A}}{d} \right)^{2j+1} \right)$$

with downsampling pattern K, is empty.

M. S. Kotzagiannidis, P. L. Dragotti, "Higher-order graph wavelets and sparsity on circulant graphs", Proc. SPIE, Wavelets and Sparsity XVI, 2015

A Generalized Graph Laplacian

Definition

Let G = (V, E), |V| = N, be undirected & circulant with adjacency matrix **A** of bandwidth *M* and degree $d = \sum_{k=1}^{M} 2d_k$ per node with symmetric weights $d_k = A_{i,(k+i)N}$. Define the parameterised *e-graph Laplacian* of *G* as $\tilde{\mathbf{L}}_{\alpha} = \tilde{\mathbf{D}}_{\alpha} - \mathbf{A}$, where $\tilde{d}_{\alpha} = \sum_{k=1}^{M} 2d_k \cos(\alpha k)$ is the exponential degree.

A Generalized Graph Laplacian

Definition

- Let G = (V, E), |V| = N, be undirected & circulant with adjacency matrix **A** of bandwidth *M* and degree $d = \sum_{k=1}^{M} 2d_k$ per node with symmetric weights $d_k = A_{i,(k+i)_N}$. Define the parameterised *e-graph Laplacian* of *G* as $\tilde{\mathbf{L}}_{\alpha} = \tilde{\mathbf{D}}_{\alpha} \mathbf{A}$, where $\tilde{d}_{\alpha} = \sum_{k=1}^{M} 2d_k \cos(\alpha k)$ is the exponential degree.
 - Note that $\tilde{\mathbf{L}}_{\alpha} = \mathbf{L}$ for $\alpha = \mathbf{0}$
 - When $\alpha = \frac{2\pi j}{N}$, we have that $\tilde{d}_{\alpha} = \lambda_j(\mathbf{A})$ for $j \in [0 \ N-1]$
 - $\Rightarrow \text{ we can interpret } \tilde{\mathbf{L}}_{\alpha} = \lambda_{j} \mathbf{I}_{N} \mathbf{A} \text{ as a shift of } \mathbf{L} \text{ by } -\tilde{\lambda}_{j}(\mathbf{L}) = (\lambda_{j} d) \text{ toward annihilation of } \mathbf{u}_{j}:$ $(\lambda_{j} \mathbf{I}_{N} \mathbf{A}) \mathbf{u}_{j} = \mathbf{0}_{N}$

A Generalized Graph Laplacian

Definition

- Let G = (V, E), |V| = N, be undirected & circulant with adjacency matrix **A** of bandwidth *M* and degree $d = \sum_{k=1}^{M} 2d_k$ per node with symmetric weights $d_k = A_{i,(k+i)_N}$. Define the parameterised *e-graph Laplacian* of *G* as $\tilde{\mathbf{L}}_{\alpha} = \tilde{\mathbf{D}}_{\alpha} \mathbf{A}$, where $\tilde{d}_{\alpha} = \sum_{k=1}^{M} 2d_k \cos(\alpha k)$ is the exponential degree.
 - Note that $\tilde{\mathbf{L}}_{\alpha} = \mathbf{L}$ for $\alpha = \mathbf{0}$

• When
$$\alpha = \frac{2\pi j}{N}$$
, we have that $\tilde{d}_{\alpha} = \lambda_j(\mathbf{A})$ for $j \in [0 \ N-1]$

⇒ we can interpret
$$\tilde{L}_{\alpha} = \lambda_j \mathbf{I}_N - \mathbf{A}$$
 as a shift of **L** by $-\tilde{\lambda}_j(\mathbf{L}) = (\lambda_j - d)$ toward annihilation of \mathbf{u}_j :
 $(\lambda_j \mathbf{I}_N - \mathbf{A})\mathbf{u}_j = \mathbf{0}_N$

Lemma 2

For undirected, circulant G = (V, E), the representer polynomial $\tilde{l}(z)$ of \tilde{L}_{α} has 2 vanishing exponential moments, i.e. \tilde{L}_{α} annihilates complex exponential polynomial graph signals $y(t) = p(t)e^{\pm i\alpha t}$, $\alpha \in \mathbb{R}$ and degp(t) = 0. Unless $\alpha = \frac{2\pi k}{N}$, $k \in [0 \ N-1]$, this is subject to a border effect determined by M, whereby 2M < N.

Proof: $\tilde{l}(z)$ factors $(1 - e^{i\alpha}z^{-1})(1 - e^{-i\alpha}z^{-1})$, which corresponds to 2 vanishing exponential moments.

Higher-Order Graph E-Spline Wavelet Transform

Given connected, undirected circulant G, we create higher-order graph e-spline wavelet transforms for multiple parameters $\vec{\alpha} = (\alpha_1, ..., \alpha_T)$, composed of low-& high-pass filters of the form

$$\mathbf{H}_{LP\vec{\alpha}} = \prod_{n=1}^{T} \frac{1}{2^{k}} \left(\beta_{n} \mathbf{I}_{N} + \frac{\mathbf{A}}{d} \right)^{k}$$
(3)

$$\mathbf{H}_{HP\vec{\alpha}} = \prod_{n=1}^{T} \frac{1}{2^k} \left(\beta_n \mathbf{I}_N - \frac{\mathbf{A}}{d} \right)^k = \prod_{n=1}^{T} \frac{\mathbf{L}_{\alpha_n}^k}{(2d)^k}$$
(4)

whereby **A** is the adjacency matrix, *d* the degree per node and parameter $\beta_n = \frac{\dot{d}_{\alpha_n}}{d}$, with exponential degree $\tilde{d}_{\alpha_n} = \sum_{k=1}^{M} 2d_k \cos(\alpha_n k)$.

- $H_{HP\vec{lpha}}$ annihilates complex exponential polynomials (of deg $p(t) \leq k-1$) with exponent $\pm i\alpha_n$
- The transform is invertible subject to restrictions on parameters k, T and β_n , as well as on the downsampling pattern.

A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain

- A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain
- The rows/columns of H_{LPα} = ¹/_{2d}(2D̃_α − L̃_α) for k = 1 produce the discrete linear spline for α = 0 & e-spline of order 2 for α ≠ 0

- A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain
- The rows/columns of H_{LPα} = ¹/_{2d} (2D̃_α − L̃_α) for k = 1 produce the discrete linear spline for α = 0 & e-spline of order 2 for α ≠ 0

- **Corollary 1**: If G = (V, E) is undirected, connected and bipartite circulant, the rows/columns of $H_{LP_{\alpha}}$ can reproduce complex exponentials (*linear polynomials*)
- ⇒ Undirected, bipartite circulant graphs bear a spline-property: graph-splines & associated filterbanks with 2 vanishing (exponential) moments

- A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain
- The rows/columns of $\mathbf{H}_{LP_{\alpha}} = \frac{1}{2d} (2\tilde{\mathbf{D}}_{\alpha} \tilde{\mathbf{L}}_{\alpha})$ for k = 1 produce the discrete linear spline for $\alpha = 0$ & e-spline of order 2 for $\alpha \neq 0$

- **Corollary 1**: If G = (V, E) is undirected, connected and bipartite circulant, the rows/columns of $H_{LP_{\alpha}}$ can reproduce complex exponentials (*linear polynomials*)
- ⇒ Undirected, bipartite circulant graphs bear a spline-property: graph-splines & associated filterbanks with 2 vanishing (exponential) moments
- In general, the HG(E)SWT, whose high-pass filter H^k_{HPα} has 2k vanishing exponential moments, gives rise to higher-order graph-(e-)spline functions

- A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain
- The rows/columns of $\mathbf{H}_{LP_{\alpha}} = \frac{1}{2d} (2\tilde{\mathbf{D}}_{\alpha} \tilde{\mathbf{L}}_{\alpha})$ for k = 1 produce the discrete linear spline for $\alpha = 0$ & e-spline of order 2 for $\alpha \neq 0$

- **Corollary 1**: If G = (V, E) is undirected, connected and bipartite circulant, the rows/columns of $H_{LP_{\alpha}}$ can reproduce complex exponentials (*linear polynomials*)
- ⇒ Undirected, bipartite circulant graphs bear a spline-property: graph-splines & associated filterbanks with 2 vanishing (exponential) moments
- In general, the HG(E)SWT, whose high-pass filter H^k_{HPα} has 2k vanishing exponential moments, gives rise to higher-order graph-(e-)spline functions
- Note: Splines are traditionally defined via the Green's functions of a continuous differential operator

Higher-Order E-Spline-Wavelets on Circulant Graphs

Design new graph wavelets, with well-defined synthesis filters, and reproduction properties, via spectral factorization

Higher-Order E-Spline-Wavelets on Circulant Graphs

Design new graph wavelets, with well-defined synthesis filters, and reproduction properties, via spectral factorization

► Given high-pass filter $H_{HP_{\vec{\alpha}}}(z) = \prod_{n=1}^{T} \frac{\tilde{I}_{\alpha_n}(z)^k}{(2d)^k}$, with $\tilde{H}_{LP_{\vec{\alpha}}}(z) = H_{HP_{\vec{\alpha}}}(-z)$, we derive symmetric analysis low-pass filter $H_{LP_{\vec{\alpha}}}(z)$: let $P(z) = H_{LP_{\vec{\alpha}}}(z)\tilde{H}_{LP_{\vec{\alpha}}}(z)$, subject to P(z) + P(-z) = 2

Can impose further constraints such as $H_{LP_{\vec{\alpha}}}(z) = \prod_{n=1}^{T} (z + 2\cos(\alpha_n) + z^{-1})^k R(z)$ for unknown R(z)

Higher-Order E-Spline-Wavelets on Circulant Graphs

Design new graph wavelets, with well-defined synthesis filters, and reproduction properties, via spectral factorization

• Given high-pass filter $H_{HP_{\vec{\alpha}}}(z) = \prod_{n=1}^{T} \frac{\tilde{l}_{\alpha_n}(z)^k}{(2d)^k}$, with $\tilde{H}_{LP_{\vec{\alpha}}}(z) = H_{HP_{\vec{\alpha}}}(-z)$, we derive symmetric

analysis low-pass filter $H_{LP_{\vec{\alpha}}}(z)$: let $P(z) = H_{LP_{\vec{\alpha}}}(z)\tilde{H}_{LP_{\vec{\alpha}}}(z)$, subject to P(z) + P(-z) = 2

Can impose further constraints such as $H_{LP_{\vec{\alpha}}}(z) = \prod_{n=1}^{T} (z + 2\cos(\alpha_n) + z^{-1})^k R(z)$ for unknown R(z)

Theorem 2

For undirected connected circulant graph G = (V, E), with adjacency matrix **A** and node degree *d*, we define the *higher-order 'complementary' graph e-spline wavelet transform* (HCGESWT) via the analysis filters:

$$\mathbf{H}_{LP_{\vec{\alpha},an}} \stackrel{(*)}{=} \mathbf{C}\bar{\mathbf{H}}_{LP,\vec{\alpha}} = \mathbf{C}\prod_{n=1}^{T} \frac{1}{2^{k}} \left(\beta_{n}\mathbf{I}_{N} + \frac{\mathbf{A}}{d}\right)^{k}$$
(5)

$$\mathbf{H}_{HP_{\vec{\alpha},an}} = \prod_{n=1}^{T} \frac{1}{2^{k}} \left(\beta_{n} \mathbf{I}_{N} - \frac{\mathbf{A}}{d} \right)^{k}$$
(6)

and synthesis filters:

$$\mathbf{H}_{LP_{\vec{\alpha},syn}} = \mathbf{H}_{HP_{\vec{\alpha},an}} \circ I_{HP} \tag{7}$$

$$\mathbf{H}_{HP_{\vec{\alpha},syn}} = \mathbf{H}_{LP_{\vec{\alpha},an}} \circ I_{LP}$$
(8)

where $\mathbf{H}_{LP_{\vec{\alpha},an}}$ is the solution to the above linear system, with circulant $\mathbf{C} = \mathbf{H}_{LP_{\vec{\alpha},an}} \mathbf{\bar{H}}_{LP,\vec{\alpha}'}^{-1}$ and circulant indicator matrices $I_{LP/HP}$ with first row [1 - 1 1 - 1 ...].

^{*} applies when $\bar{\mathbf{H}}_{LP,\vec{\alpha}}$ is invertible

Sampling of Sparse and Compressible Graph Signals

We can obtain a sparse (multiresolution) representation of a 'compressible' graph signal x, which we term wavelet-K-sparse, using a suitable GWT

Figure 2: Compressible graph signals

- Iterate on the low-pass-branch and redefine the downsampled output on coarsened graphs
- \Rightarrow choose coarsening schemes with little to no reconnection, which preserve circularity
- Ultimately, we consider the multilevel representation of x on the initial graph G

The Graph-FRI Framework

In discrete-time, a K-sparse signal $\mathbf{x} \in \mathbb{R}^N$ with measurement vector $\mathbf{y} = \mathbf{F}\mathbf{x}$, where $\mathbf{F} \in \mathbb{C}^{N \times N}$ is

- the DFT-matrix, can be perfectly reconstructed from $M \ge 2K$ consecutive sample values of **y** using *Prony's method*
- \Rightarrow Define the permuted GFT basis of circulant graph G such that **U**^H is the DFT-matrix

The Graph-FRI Framework

In discrete-time, a K-sparse signal $\mathbf{x} \in \mathbb{R}^N$ with measurement vector $\mathbf{y} = \mathbf{F}\mathbf{x}$, where $\mathbf{F} \in \mathbb{C}^{N \times N}$ is

- the DFT-matrix, can be perfectly reconstructed from $M \ge 2K$ consecutive sample values of **y** using *Prony's method*
- \Rightarrow Define the permuted GFT basis of circulant graph G such that **U**^H is the DFT-matrix

Theorem 3 (Graph-FRI)

We can sample and perfectly reconstruct a (wavelet-)*K*-sparse graph signal (with multiresolution) $\mathbf{x} \in \mathbb{C}^N$, on the vertices of circulant *G* using the dimensionality-reduced GFT representation $\mathbf{y} = \mathbf{U}_M^H \mathbf{x}, \mathbf{y} \in \mathbb{C}^M$, whereby \mathbf{U}_M^H are the first *M* rows of \mathbf{U}^H , as long as $M \ge 2K$.

The Graph-FRI Framework

In discrete-time, a K-sparse signal $\mathbf{x} \in \mathbb{R}^N$ with measurement vector $\mathbf{y} = \mathbf{F}\mathbf{x}$, where $\mathbf{F} \in \mathbb{C}^{N \times N}$ is

- the DFT-matrix, can be perfectly reconstructed from $M \ge 2K$ consecutive sample values of **y** using *Prony's method*
- \Rightarrow Define the permuted GFT basis of circulant graph G such that **U**^H is the DFT-matrix

Theorem 3 (Graph-FRI)

We can sample and perfectly reconstruct a (wavelet-)*K*-sparse graph signal (with multiresolution) $\mathbf{x} \in \mathbb{C}^N$, on the vertices of circulant *G* using the dimensionality-reduced GFT representation $\mathbf{y} = \mathbf{U}_M^H \mathbf{x}, \mathbf{y} \in \mathbb{C}^M$, whereby \mathbf{U}_M^H are the first *M* rows of \mathbf{U}^H , as long as $M \ge 2K$.

But what graph is y associated with?

$$\begin{array}{cccc} \mathbf{X} & \rightarrow & \underbrace{\mathbf{LP}} & \mathbf{GFT} \\ \hline \mathbf{E} \downarrow \mathbf{2} & \rightarrow & \mathbf{\tilde{y}} & \rightarrow & \underbrace{\mathbf{C}} \\ & & & & \\ & & & \\ \hline & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Theorem 4

Given GFT $\mathbf{y} \in \mathbb{C}^M$ from Thm 3., we determine the coarsened graph $\tilde{G} = (\tilde{V}, \tilde{E})$ associated with the dimensionality-reduced graph signal $\tilde{\mathbf{y}} \in \mathbb{C}^{\tilde{M}}$, via the decomposition

$$\mathbf{y} = \mathbf{U}_M^H \mathbf{x} = \mathbf{C} \prod_{j=0}^{J-1} (\mathbf{\Psi}_{j\downarrow 2} \mathbf{E}_{2^j \vec{\alpha}}) \mathbf{x} = \mathbf{C} \tilde{\mathbf{y}}$$

 $\begin{array}{l} \mathbf{U}_{M}^{H} \in \mathbb{C}^{M \times N} \text{: row-reduced permuted GFT basis} \\ \mathbf{C} \in \mathbb{C}^{M \times \tilde{M}} \text{: coefficient matrix with } \tilde{M} = \frac{N}{2^{J}}, \\ \mathbf{\Psi}_{j \downarrow 2} \in \mathbb{R}^{N/2^{j+1} \times N/2^{j}} \text{: binary sampling matrix, which retains even nodes,} \\ \mathbf{E}_{2^{j} \vec{\alpha}} \in \mathbb{R}^{N/2^{j} \times N/2^{j}} \text{: (higher-order) graph e-spline low-pass filter on } \tilde{G}_{j}, \text{ which reproduces complex exponentials at level } j, \text{ with parameters } \vec{\alpha} = (\alpha_{1},...,\alpha_{M}) = \left(0,...,\frac{2\pi(M-1)}{N}\right). \end{array}$

Theorem 4

Given GFT $\mathbf{y} \in \mathbb{C}^M$ from Thm 3., we determine the coarsened graph $\tilde{G} = (\tilde{V}, \tilde{E})$ associated with the dimensionality-reduced graph signal $\tilde{\mathbf{y}} \in \mathbb{C}^{\tilde{M}}$, via the decomposition

$$\mathbf{y} = \mathbf{U}_{M}^{H} \mathbf{x} = \mathbf{C} \prod_{j=0}^{J-1} (\mathbf{\Psi}_{j\downarrow 2} \mathbf{E}_{2^{j} \vec{\alpha}}) \mathbf{x} = \mathbf{C} \tilde{\mathbf{y}}$$

$$\begin{split} \mathbf{U}_{M}^{H} &\in \mathbb{C}^{M \times N} \text{: row-reduced permuted GFT basis} \\ \mathbf{C} &\in \mathbb{C}^{M \times \tilde{M}} \text{: coefficient matrix with } \tilde{M} = \frac{N}{2^{j}}, \\ \mathbf{\Psi}_{j\downarrow 2} &\in \mathbb{R}^{N/2^{j+1} \times N/2^{j}} \text{: binary sampling matrix, which retains even nodes,} \\ \mathbf{E}_{2^{j} \tilde{\alpha}} &\in \mathbb{R}^{N/2^{j} \times N/2^{j}} \text{: (higher-order) graph e-spline low-pass filter on } \tilde{G}_{j}, \text{ which reproduces complex exponentials at level } j, \text{ with parameters } \vec{\alpha} = (\alpha_{1}, ..., \alpha_{M}) = \left(0, ..., \frac{2\pi(M-1)}{N}\right). \end{split}$$

▶ We can show that $\mathbf{C} = \hat{\mathbf{C}} \tilde{\mathbf{U}}_M^H$, with diagonal $\hat{\mathbf{C}}$ and DFT-matrix $\tilde{\mathbf{U}}_M^H \in \mathbb{C}^{M \times N/2^J}$

Constraints on a and levels j ≤ J apply

Theorem 4

Given GFT $\mathbf{y} \in \mathbb{C}^M$ from Thm 3., we determine the coarsened graph $\tilde{G} = (\tilde{V}, \tilde{E})$ associated with the dimensionality-reduced graph signal $\tilde{\mathbf{y}} \in \mathbb{C}^{\tilde{M}}$, via the decomposition

$$\mathbf{y} = \mathbf{U}_M^H \mathbf{x} = \mathbf{C} \prod_{j=0}^{J-1} (\mathbf{\Psi}_{j\downarrow 2} \mathbf{E}_{2^j \vec{\alpha}}) \mathbf{x} = \mathbf{C} \tilde{\mathbf{y}}$$

$$\begin{split} \mathbf{U}_{M}^{H} \in \mathbb{C}^{M \times N} \text{: row-reduced permuted GFT basis} \\ \mathbf{C} \in \mathbb{C}^{M \times \tilde{M}} \text{: coefficient matrix with } \tilde{M} = \frac{N}{2^{J}}, \end{split}$$

 $\Psi_{j\downarrow 2} \in \mathbb{R}^{N/2^{j+1} \times N/2^{j}}$: binary sampling matrix, which retains even nodes,

 $\mathbf{E}_{2^{j}\vec{\alpha}} \in \mathbb{R}^{N/2^{j} \times N/2^{j}}: \text{ (higher-order) graph e-spline low-pass filter on } \tilde{G}_{j}, \text{ which reproduces complex exponentials at level } j, \text{ with parameters } \vec{\alpha} = (\alpha_{1}, ..., \alpha_{M}) = \left(0, ..., \frac{2\pi(M-1)}{N}\right).$

- ▶ We can show that $\mathbf{C} = \hat{\mathbf{C}} \tilde{\mathbf{U}}_M^H$, with diagonal $\hat{\mathbf{C}}$ and DFT-matrix $\tilde{\mathbf{U}}_M^H \in \mathbb{C}^{M \times N/2^J}$
- Constraints on $\vec{\alpha}$ and levels $j \leq J$ apply

The coarsened graph \tilde{G}_j at level j can be determined through two different schemes:

(i) Using the pattern V_{lpha} in $\Psi_{j\downarrow 2}$, perform Kron-reduction to obtain graph Laplacian L_j at level j

$$\mathbf{L}_{j} = \mathbf{L}_{j-1}(V_{\alpha}, V_{\alpha}) - \mathbf{L}_{j-1}(V_{\alpha}, V_{\alpha}^{C})\mathbf{L}_{j-1}(V_{\alpha}^{C}, V_{\alpha}^{C})^{-1}\mathbf{L}_{j-1}(V_{\alpha}, V_{\alpha}^{C})$$

(*ii*) Define eigenbasis $(\tilde{\mathbf{U}}_j, \tilde{\mathbf{A}}_j) \in \mathbb{C}^{N/2^j \times N/2^j}$ at level $j \leq J$, through the projection of $\Psi_{j-1\downarrow 2}$ on

 $(\tilde{\mathbf{U}}_{j-1}, \tilde{\mathbf{A}}_{j-1})$. The coarse graph \tilde{G}_j for graph signal $\tilde{\mathbf{y}}_j = \prod_{k=0}^{j-1} (\mathbf{\Psi}_{k\downarrow 2} \mathbf{E}_{2^k \vec{\alpha}}) \mathbf{x}$, has adjacency matrix

$$\mathbf{A}_j = (2^j / N) \tilde{\mathbf{U}}_j \tilde{\mathbf{\Lambda}}_j \tilde{\mathbf{U}}_j^H$$

which preserves generating set S of G for a sufficiently small bandwidth.

Figure 3: Scheme (ii) for a Graph with $S = \{1, 2, 3\}$

Generalizations to Arbitrary Graphs

Given an arbitrary graph G with adjacency matrix **A**, we can resort to approximation schemes

Nearest Circulant Approximations:

$$\tilde{\mathbf{A}} = \sum_{i=0}^{N-1} \frac{1}{N} \langle \mathbf{A}^P, \mathbf{\Pi}^i \rangle_F \mathbf{\Pi}^i, \quad \text{for circulant permutation matrix } \mathbf{\Pi}$$

subject to prior relabelling P, and/or graph (community) partitioning

Generalizations to Arbitrary Graphs

Given an arbitrary graph G with adjacency matrix **A**, we can resort to approximation schemes

Nearest Circulant Approximations:

$$\tilde{\mathbf{A}} = \sum_{i=0}^{N-1} \frac{1}{N} \langle \mathbf{A}^{\mathcal{P}}, \mathbf{\Pi}^i \rangle_{\mathcal{F}} \mathbf{\Pi}^i, \quad \text{for circulant permutation matrix } \mathbf{\Pi}$$

subject to prior relabelling P, and/or graph (community) partitioning

 Graph Product Approximations: impose circularity on factor graphs for multi-dimensional wavelet analysis

Figure 4: Cartesian Graph Product of Circulants

Conclusion and Future Work

- We have introduced a breadth of novel higher-order GWT constructions for the reproduction/annihilation of smooth graph signals
- By identifying arising spline-like functions, we can detect links to established concepts from classical SP
- On that basis, we formulate a sampling and graph coarsening theory for sparse signals on graphs, extending the classical FRI framework

Conclusion and Future Work

- We have introduced a breadth of novel higher-order GWT constructions for the reproduction/annihilation of smooth graph signals
- By identifying arising spline-like functions, we can detect links to established concepts from classical SP
- On that basis, we formulate a sampling and graph coarsening theory for sparse signals on graphs, extending the classical FRI framework
- Expand annihilation properties of existing (and/or evolved) GWT designs to more classes of graph signals

For a comprehensive discussion on circulant (e-)spline wavelets and extensions, refer to arXiv

Splines and Wavelets on Circulant Graphs http://arxiv.org/abs/1603.04917

Thank you.

References I

- M.S. Kotzagiannidis, and P.L. Dragotti, "Sparse graph signal reconstruction and image processing on circulant graphs", *IEEE GlobalSIP*, pp. 923-927, 2014
- M. S. Kotzagiannidis and P. L. Dragotti, "Higher-order graph wavelets and sparsity on circulant graphs", in *Proc. SPIE*, Wavelets and Sparsity XVI, Vol. 9597 (SPIE, Bellingham, WA 2015), 95971E, 2015
- D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains", *SP Magazine, IEEE*, vol. 30, no. 3, pp. 83-98, 2013.
- Y. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchandran, "Circulant structures and graph signal processing", in *Proc. of the IEEE International Conference on Image Processing (IC/P)*, pp. 834-838, 2013.
- V. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchandran, "Critically-Sampled Perfect-Reconstruction Spline-Wavelet Filterbanks for Graph Signals", *IEEE GlobalSIP*, pp. 475-478, 2013.
 - C. Vonesch, T. Blu, and M. Unser, "Generalized daubechies wavelet families", *IEEE Transactions on Signal Processing*, vol. 55, no. 9, pp. 4415-4429, Sept 2007.