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Sparsity on Graphs: General Motivation and Objectives

I Explore sparsity on circulant graphs, while demonstrating intuitive and concrete links to SP in the
Euclidean domain

I Circulant graphs are LSI & circulant matrices are diagonalizable by the DFT-matrix

I Wavelet Analysis: Circulant Graph (E-)Spline Wavelet Transforms with reproduction & annihilation
properties

I Sparse Sampling: Perfect recovery of sampled (wavelet-)sparse graph signals on coarsened graphs

I We can generalize operations to arbitrary graphs via approximation schemes
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Signal Processing on Graphs

I A graph G = (V , E), with |V | = N, is described via a vertex set V = {V0, ...,VN−1}, and an edge
set E = {E0, ..., EM−1}

5
3

4
0

1
2

I The connectedness of G is represented by adjacency matrix A, where

Ai,j =

{
1, if i and j are adjacent (i 6= j)
0, otherwise

I The degree matrix D of G is given by

Di,j =

{ ∑
j Ai,j , if i = j
0, otherwise

I The non-normalized graph Laplacian is given by L = D− A

I We consider undirected, and (un-)weighted connected graphs without self-loops

I A graph signal is a scalar function x : V → C defined on G such that x(V ) is the sample value of

x ∈ CN at vertex V

I L has a complete set of orthonormal eigenvectors {ul}l=0,...,N−1 with eigenvalues
0 = λ0 < λ1 ≤ ... ≤ λN−1.

I The Graph Fourier Transform (GFT) of a graph signal x on G is given by XG = UHx
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Circulant Graph Theory

I

Definition

A graph G is circulant with respect to a generating set S = {s1, . . . , sM}, with 0 < sk ≤ N/2
if there exists an edge between nodes (i, (i ± sk )N ), for every sk ∈ S. Alternatively, a graph is
circulant if its graph Laplacian matrix L is circulant.

I We can express L with first row [l0 ... lN−1], via its representer polynomial l(z) =
∑N−1

i=0 li z
i ,

whereby L =
∑N−1

i=0 liΠ
i for circulant permutation matrix Π.

I The GFT of a circulant graph can be represented as a permutation of the DFT matrix

I Prior research [Ekambaram et al, ’13]: fundamental SP operations on circulant graphs, incl.
sampling & reconnection strategies, multiscale wavelet analysis (spline-like graph wavelet filterbank)

Figure 1: Downsampling w.r.t. s = 1 for S = {1, 2}
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Prior Work: Graph Spline Wavelet Transform

I Lemma 1. For an undirected, circulant graph G = (V , E), with |V | = N, the representer

polynomial l(z) = l0 +
∑M

i=1 li (z
i + z−i ) of graph Laplacian L, with first row [l0 l1 l2 ... l2 l1],

has 2 vanishing moments. Thus, L annihilates up to linear polynomial graph signals, subject to a
border effect determined by bandwidth M of L, provided 2M < N.

I

Theorem 1

The higher-order graph-spline wavelet transform (HGSWT), for an undirected, connected circulant
graph G , with adjacency matrix A and degree d per node, composed of the low-and high-pass filters

HLP =
1

2k

(
IN +

A

d

)k

(1)

HHP =
1

2k

(
IN −

A

d

)k

=
Lk

(2d)k
(2)

with 2k vanishing moments, is invertible as long as at least one node retains the lowpass component.

Proof: We can demonstrate that the nullspace of

1

2k

∑
j∈Z

(k
2j

)(A

d

)2j

+ K
∑
j∈Z

( k

2j + 1

)(A

d

)2j+1


with downsampling pattern K, is empty.

M. S. Kotzagiannidis, P. L. Dragotti, “Higher-order graph wavelets and sparsity on circulant graphs”, Proc. SPIE, Wavelets and Sparsity XVI, 2015

M. S. Kotzagiannidis, P. L. Dragotti Spline Wavelet Theory and Sampling on Circulant Graphs 6 / 18



Prior Work: Graph Spline Wavelet Transform

I Lemma 1. For an undirected, circulant graph G = (V , E), with |V | = N, the representer

polynomial l(z) = l0 +
∑M

i=1 li (z
i + z−i ) of graph Laplacian L, with first row [l0 l1 l2 ... l2 l1],

has 2 vanishing moments. Thus, L annihilates up to linear polynomial graph signals, subject to a
border effect determined by bandwidth M of L, provided 2M < N.

I

Theorem 1

The higher-order graph-spline wavelet transform (HGSWT), for an undirected, connected circulant
graph G , with adjacency matrix A and degree d per node, composed of the low-and high-pass filters

HLP =
1

2k

(
IN +

A

d

)k

(1)

HHP =
1

2k

(
IN −

A

d

)k

=
Lk

(2d)k
(2)

with 2k vanishing moments, is invertible as long as at least one node retains the lowpass component.

Proof: We can demonstrate that the nullspace of

1

2k

∑
j∈Z

(k
2j

)(A

d

)2j

+ K
∑
j∈Z

( k

2j + 1

)(A

d

)2j+1


with downsampling pattern K, is empty.

M. S. Kotzagiannidis, P. L. Dragotti, “Higher-order graph wavelets and sparsity on circulant graphs”, Proc. SPIE, Wavelets and Sparsity XVI, 2015

M. S. Kotzagiannidis, P. L. Dragotti Spline Wavelet Theory and Sampling on Circulant Graphs 6 / 18



A Generalized Graph Laplacian

I

Definition

Let G = (V , E), |V | = N, be undirected & circulant with adjacency matrix A of bandwidth M and

degree d =
∑M

k=1 2dk per node with symmetric weights dk = Ai,(k+i)N
. Define the parameterised

e-graph Laplacian of G as L̃α = D̃α − A, where d̃α =
∑M

k=1 2dk cos(αk) is the exponential degree.

I Note that L̃α = L for α = 0

I When α = 2πj
N , we have that d̃α = λj (A) for j ∈ [0 N − 1]

⇒ we can interpret L̃α = λj IN − A as a shift of L by −λ̃j (L) = (λj − d) toward annihilation of uj :

(λj IN − A)uj = 0N

I

Lemma 2

For undirected, circulant G = (V , E), the representer polynomial l̃(z) of L̃α has 2 vanishing

exponential moments, i.e. L̃α annihilates complex exponential polynomial graph signals
y(t) = p(t)e±iαt , α ∈ R and degp(t) = 0 . Unless α = 2πk

N , k ∈ [0 N − 1], this is subject to a
border effect determined by M, whereby 2M < N.

Proof: l̃(z) factors (1− e iαz−1)(1− e−iαz−1), which corresponds to 2 vanishing exponential moments.
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Higher-Order Graph E-Spline Wavelet Transform

I Given connected, undirected circulant G , we create higher-order graph e-spline wavelet transforms
for multiple parameters ~α = (α1, ..., αT ), composed of low-& high-pass filters of the form

HLP ~α =
T∏

n=1

1

2k

(
βnIN +

A

d

)k

(3)

HHP ~α =
T∏

n=1

1

2k

(
βnIN −

A

d

)k

=
T∏

n=1

Lk
αn

(2d)k
(4)

whereby A is the adjacency matrix, d the degree per node and parameter βn =
d̃αn

d
, with

exponential degree d̃αn =
∑M

k=1 2dk cos(αnk).

I HHP ~α annihilates complex exponential polynomials (of degp(t) ≤ k − 1) with exponent ±iαn

I The transform is invertible subject to restrictions on parameters k,T and βn, as well as on the
downsampling pattern.
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Spline-Like Properties on Graphs

I A signal on the simple cycle graph is analogous to a periodic-time signal in the classical domain

I The rows/columns of HLPα = 1
2d (2D̃α − L̃α) for k = 1 produce the discrete linear spline for α = 0

& e-spline of order 2 for α 6= 0

HLPα :=



0.5 cos(α) 0.25 0 · · · 0 0.25
0.25 0.5 cos(α) 0.25 0 · · · 0

. . .
. . .

. . .
. . .

0.25 0 · · · 0 0.25 0.5 cos(α)



I Corollary 1: If G = (V , E) is undirected, connected and bipartite circulant, the rows/columns of
HLPα can reproduce complex exponentials (linear polynomials)

⇒ Undirected, bipartite circulant graphs bear a spline-property: graph-splines & associated filterbanks
with 2 vanishing (exponential) moments

I In general, the HG(E)SWT, whose high-pass filter Hk
HPα

has 2k vanishing exponential moments,

gives rise to higher-order graph-(e-)spline functions

I Note: Splines are traditionally defined via the Green’s functions of a continuous differential operator
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Higher-Order E-Spline-Wavelets on Circulant Graphs
I Design new graph wavelets, with well-defined synthesis filters, and reproduction properties, via spectral

factorization

I Given high-pass filter HHP~α
(z) =

∏T
n=1

l̃αn (z)k

(2d)k
, with H̃LP~α

(z) = HHP~α
(−z), we derive symmetric

analysis low-pass filter HLP~α
(z): let P(z) = HLP~α

(z)H̃LP~α
(z) , subject to P(z) + P(−z) = 2

I Can impose further constraints such as HLP~α
(z) =

∏T
n=1(z + 2 cos(αn) + z−1)kR(z) for unknown R(z)

I

Theorem 2

For undirected connected circulant graph G = (V , E), with adjacency matrix A and node degree d ,
we define the higher-order ‘complementary’ graph e-spline wavelet transform (HCGESWT) via the
analysis filters:

HLP~α,an

(∗)
= CH̄LP,~α = C

T∏
n=1

1

2k

(
βnIN +

A

d

)k

(5)

HHP~α,an
=

T∏
n=1

1

2k

(
βnIN −

A

d

)k

(6)

and synthesis filters:
HLP~α,syn

= HHP~α,an
◦ IHP (7)

HHP~α,syn
= HLP~α,an

◦ ILP (8)

where HLP~α,an
is the solution to the above linear system, with circulant C = HLP~α,an

H̄−1
LP,~α

, and

circulant indicator matrices ILP/HP with first row [1 − 1 1 − 1 ...].

* applies when H̄LP,~α is invertible
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Sampling of Sparse and Compressible Graph Signals

I We can obtain a sparse (multiresolution) representation of a ‘compressible’ graph signal x, which we
term wavelet-K -sparse, using a suitable GWT
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Figure 2: Compressible graph signals

I Iterate on the low-pass-branch and redefine the downsampled output on coarsened graphs

⇒ choose coarsening schemes with little to no reconnection, which preserve circularity

I Ultimately, we consider the multilevel representation of x on the initial graph G
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The Graph-FRI Framework

I
In discrete-time, a K -sparse signal x ∈ RN with measurement vector y = Fx, where F ∈ CN×N is
the DFT-matrix, can be perfectly reconstructed from M ≥ 2K consecutive sample values of y using
Prony’s method

⇒ Define the permuted GFT basis of circulant graph G such that UH is the DFT-matrix

I

Theorem 3 (Graph-FRI)

We can sample and perfectly reconstruct a (wavelet-)K -sparse graph signal (with multiresolution)

x ∈ CN , on the vertices of circulant G using the dimensionality-reduced GFT representation
y = UH

Mx, y ∈ CM , whereby UH
M are the first M rows of UH , as long as M ≥ 2K .

 y

 =


uH

1

uH
2

.

.

.

uH
M


GFTM


x


I But what graph is y associated with?

P. L. Dragotti, M. Vetterli, and T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets strang-fix, IEEE
Trans. Signal Process., 2007
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GFRI: Graph Coarsening
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GFRI: Graph Coarsening

I

Theorem 4

Given GFT y ∈ CM from Thm 3., we determine the coarsened graph G̃ = (Ṽ , Ẽ) associated with

the dimensionality-reduced graph signal ỹ ∈ CM̃ , via the decomposition

y = UH
Mx = C

J−1∏
j=0

(Ψj↓2E2j ~α)x = Cỹ

UH
M ∈ CM×N : row-reduced permuted GFT basis

C ∈ CM×M̃ : coefficient matrix with M̃ = N

2J
,

Ψj↓2 ∈ RN/2j+1×N/2j : binary sampling matrix, which retains even nodes,

E2j ~α ∈ RN/2j×N/2j : (higher-order) graph e-spline low-pass filter on G̃j , which reproduces complex

exponentials at level j , with parameters ~α = (α1, ..., αM ) =
(

0, ..., 2π(M−1)
N

)
.
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I We can show that C = ĈŨH
M , with diagonal Ĉ and DFT-matrix ŨH

M ∈ CM×N/2J

I Constraints on ~α and levels j ≤ J apply
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GFRI: Graph Coarsening

I

The coarsened graph G̃j at level j can be determined through two different schemes:

(i) Using the pattern Vα in Ψj↓2, perform Kron-reduction to obtain graph Laplacian Lj at level j

Lj = Lj−1(Vα,Vα)− Lj−1(Vα,V
C
α )Lj−1(V C

α ,V
C
α )−1Lj−1(Vα,V

C
α )T

(ii) Define eigenbasis (Ũj , Λ̃j ) ∈ CN/2j×N/2j at level j ≤ J, through the projection of Ψj−1↓2 on

(Ũj−1, Λ̃j−1). The coarse graph G̃j for graph signal ỹj =
∏j−1

k=0(Ψk↓2E
2k ~α

)x, has adjacency matrix

Aj = (2j
/N)Ũj Λ̃j Ũ

H
j

which preserves generating set S of G for a sufficiently small bandwidth.

Figure 3: Scheme (ii) for a Graph with S = {1, 2, 3}
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Generalizations to Arbitrary Graphs

Given an arbitrary graph G with adjacency matrix A, we can resort to approximation schemes

I Nearest Circulant Approximations:

Ã =

N−1∑
i=0

1

N
〈AP

,Πi 〉F Πi
, for circulant permutation matrix Π

subject to prior relabelling P, and/or graph (community) partitioning

I Graph Product Approximations: impose circularity on factor graphs for multi-dimensional wavelet
analysis

Figure 4: Cartesian Graph Product of Circulants
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Conclusion and Future Work

I We have introduced a breadth of novel higher-order GWT constructions for the reproduction/annihilation
of smooth graph signals

I By identifying arising spline-like functions, we can detect links to established concepts from classical SP

I On that basis, we formulate a sampling and graph coarsening theory for sparse signals on graphs,
extending the classical FRI framework

I Expand annihilation properties of existing (and/or evolved) GWT designs to more classes of graph signals

For a comprehensive discussion on circulant (e-)spline wavelets and extensions, refer to arXiv

Splines and Wavelets on Circulant Graphs
http://arxiv.org/abs/1603.04917
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Thank you.
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