Problem Overview

Intrusive objective metrics, such as the perceptual evaluation of speech quality (PESQ), short-time objective intelligibility (STOI), have become standard measures for evaluating speech. These metrics enable efficient and costless evaluations, where ratings are often computed by comparing a degraded speech signal to its underlying clean reference signal. However, they cannot be used to evaluate real-world signals that have inaccessible references.

Non-intrusive objective metrics perform evaluations directly on the signal of interest, without the need for a reference signal. These metrics rely on properties of signals or environmental factors to determine quality and intelligibility scores. Current non-intrusive metrics have many limitations, including:

- they perform worse than intrusive measures in terms of correlations to human listening evaluations
- they have not been thoroughly evaluated in realistic environments that contain many speakers or different types of acoustical noise
- they are only intended for specific-signal types
- their prediction are not reliable in very low SNR conditions since the estimation error and variance are high

Motivation

Related works

Data-driven approaches have been proposed recently as a means of evaluating speech quality, intelligibility, naturalness, and mean opinion score:

- machine learning techniques: classification and regression trees [Sharma *et al.* 2016]
- deep learning approaches: deep neural network [Ooster et al. 2018], convolutional neural network [Andersen et al. 2018], a stack of long short-term memory [Patton et al. 2016], bidirectional long short-term memory [Fu et al. 2018]

These approaches are promising since they enable quick referenceless evaluations, and the algorithms learn from data without prior assumptions.

Our idea

Inspired by the latter deep-learning based metrics, we propose a convolutional neural network (CNN) framework for assessing the perceptual quality of speech. More specifically, we jointly train a CNN to predict the categorical objective ranking and true PESQ score, where PESQ scores are grouped into categorical classes based on pre-defined ranges.

Hence, we propose to treat objective speech evaluation as the combination of a classification and a regression task. The two tasks share the same feature extraction layers while each task also has independent modules to achieve specific goals. Learning tasks in parallel while using a shared representation has been shown to be helpful for other multi-task learning problems.

A CLASSIFICATION-AIDED FRAMEWORK FOR NON-INTRUSIVE SPEECH QUALITY ASSESSMENT Xuan Dong⁺ and Donald S. Williamson⁺ ⁺Department of Computer Science, Indiana University - Bloomington, USA

Model

Network architecture: our utterance-level classification-aided nonintrusive (UCAN) assessment approach uses a multi-layered CNN to predict both the categorical quality rankings of noisy speech and the corresponding objective quality scores.

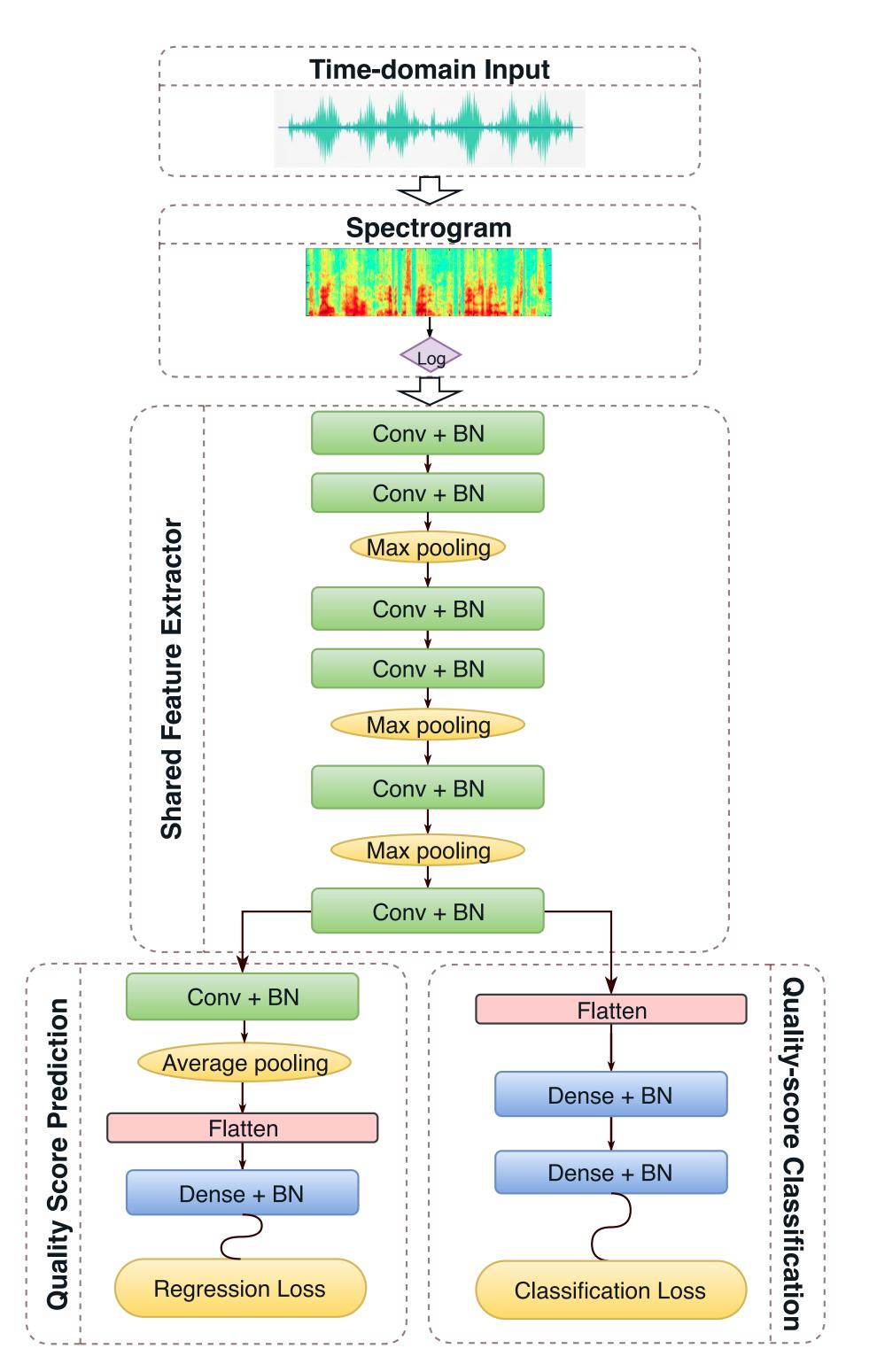


Fig. 1: Architecture of the proposed framework with shared convolutional and task-specific fully connected layers.

PESQ quality labels: Two training targets are simultaneously applied in our model. One is the raw PESQ score S_{pesq} for a particular signal, and the other is the corresponding the quality class. The PESQ classification label of a given signal is calculated by

Class(
$$S_{pesq}$$
) = min(max $\left(1, \operatorname{ceil}\left(\frac{S_{pesq} - L_t}{B}\right)\right), N$),

where L_t denotes the low threshold, B denotes the category bin size, and $ceil(\cdot)$ denotes the ceiling function.

Objective function: the mean squared loss (regression loss \mathcal{L}_{regr}) that stems from the left subnet together with the cross entropy loss (classification loss \mathcal{L}_{cls}) are utilized to update the weights of the shared network:

$$\mathcal{L}_{total} = \beta * \mathcal{L}_{cls} + (1 - \beta) * \mathcal{L}_{regr},$$

F

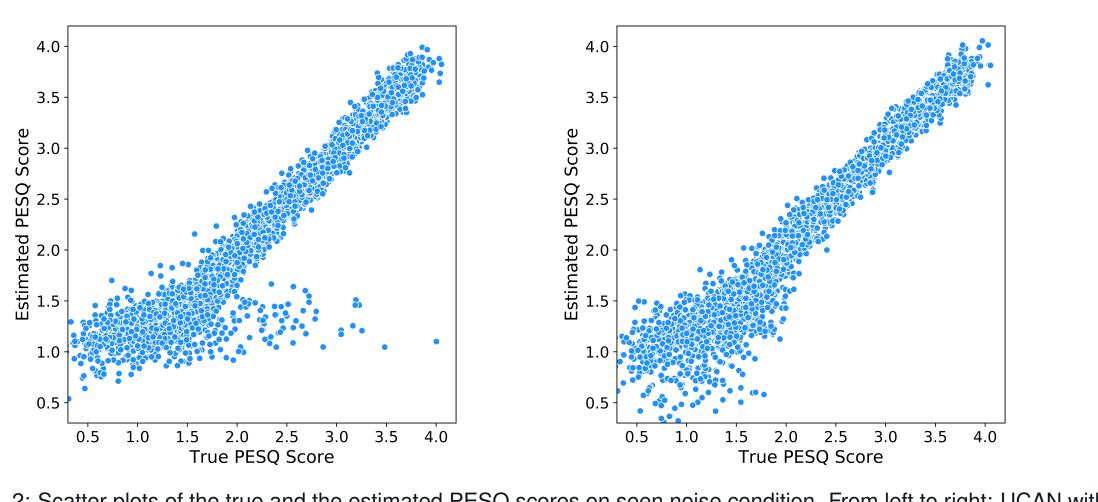
where β controls the trade-off between optimizing the network for the classification or regression task.

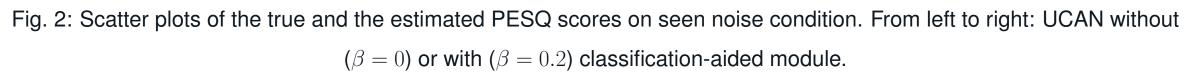
Comparison

- We used 25,000 training mixtures, and 15,000 testing mixtures that are generated from TIMIT corpus and NOISEX-92 noise database
- Cover a wide range of SNRs: from -25 dB to 30 dB with 5 dB increments

	Seen no	isy speech	Unseen	noisy speecl	Enhanced speed		
	MSE	PCC	MSE	PCC	MSE	PCC	
NISA [Sharma <i>et al.</i> 2016]	0.156	0.86	0.183	0.84	0.151	0.88	
DESQ [Ooster et al. 2018]	0.170	0.91	0.246	0.90	0.168	0.91	
CNN [Andersen et al. 2018]	0.139	0.89	0.185	0.86	0.123	0.90	
AutoMOS [Patton et al. 2016]	0.162	0.88	0.391	0.85	0.175	0.90	
Quality-Net [Fu et al. 2018]	0.149	0.90	0.170	0.89	0.102	0.93	
UCAN ($\beta = 0$)	0.097	0.94	0.112	0.92	0.087	0.94	
UCAN ($\beta = 0.2$)	0.078	0.95	0.096	0.93	0.062	0.96	

Tab. 1: Performance comparison on seen and unseen conditions





]	1 -	2	16	2	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	2 -	0	11	25	3	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	3 -	0	0	48	17	10	2	7	0	0	0	0	0	0	0	0	0	0	0	0	0
2	4 -	0	0	0	63	17	8	18	0	0	0	0	0	0	0	0	0	0	0	0	0
5	5 -	0	0	0	24	87	21	32	2	0	0	0	0	0	0	0	0	0	0	0	0
6	5 -	0	0	1	13	81	73	22	10	1	0	0	0	0	0	0	0	0	0	0	0
7	7 -	0	0	0	7	16	50	123	43	3	0	0	0	0	0	0	0	0	0	0	0
	3 -	0	0	1	3	4	27	62	65	39	6	0	0	0	0	0	0	0	0	0	0
	э -	0	0	0	7	12	3	20	50	91	50	8	0	0	0	0	0	0	0	0	0
¹⁰) -	0	0	0	1	2	3	3	15	30	71	75	8	1	0	0	0	0	0	0	0
	1 -	0	0	1	1	4	1	3	1	5	17	102	50	11	0	0	0	0	0	0	0
ע 12 כ	2 -	0	0	0	2	8	2	1	0	0	1	21	55	72	5	0	0	0	0	0	0
= 13	3 -	0	0	0	0	3	0	4	1	1	0	0		108		5	0	0	0	0	0
	4 -		0	0	1	1	1	2	0	0	0	0	1		115		3	0	0	0	0
	5 -		0	0	0	2	0	0	0	0	0	0	0	0	5		108	4	0	0	0
	5 -		0	0	1	2	0	2	0	0	0	0	0	0	0		113		1	0	0
	7 -		0	0	0	1	0	0	0	0	0	0	0	0	0	0		117		6	0
	3 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		143		0
	9 -		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	25	95	0
20) -		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	8	51
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Predicted Quality Class																15	16 3	17	18	19	20

Fig. 3: Confusion matrix of the categorical classification task.

Conclusion

We present an utterance-level classification-aided non-intrusive speech quality assessment approach to predict both the objective quality class and the quality score of noisy and enhanced speech signals. The performance of UCAN outperforms previous state-ofthe-art approaches, and significantly lowers estimation errors, which indicates that jointly training a classification-aided regression module is promising for speech quality assessment.

(2)

INDIANA UNIVERSITY BLOOMINGTON

=