

SINGLE-PIXEL CAMERA SENSING MATRIX DESIGN FOR HIERARCHICAL COMPRESSED **SPECTRAL CLUSTERING**

CARLOS HINOJOSA, JORGE BACCA, EDWIN VARGAS, SERGIO CASTILLO, AND HENRY ARGUELLO

SPECTRAL IMAGING

PROPOSED CSI CLUSTERING

Taking into account the structure of Hadamard matrices, previous work in [1] proposes to design the sensing matrix for each band as

$$\mathbf{H} = \mathbf{W} \boldsymbol{\Delta},$$

- where $\mathbf{W} \in \{-1, 1\}^{K \times K}$ is a Hadamard matrix, and $\boldsymbol{\Delta} \in \mathbb{R}^{K \times MN}$ is a decimation matrix. The proposed method consists of:
 - 1. Design Δ using *k*-means, see Algorithm 1. $\Delta^{(1)}$ is designed uniformly.
 - 2. Generate \mathbf{W}_{it} and obtain the features from each band as $\mathbf{\bar{f}}_l = \mathbf{W}_{it}^T \mathbf{g}_l = \mathbf{\Delta} \mathbf{f}_l$.
 - 3. Perform spectral clustering on rows of $\overline{\mathbf{F}} = [\overline{\mathbf{f}}_1, \cdots, \overline{\mathbf{f}}_L]$ and use Δ to obtain the clustering results corresponding to the *it* scale. See Algorithm 2.

SPECTRAL CLUSTERING

PARAMETERS ANALYSIS

10

11:

- Given $\hat{N} = M \cdot N$ points, define a similarity matrix $\mathbf{A} \in \mathbb{R}^{\hat{N} \times \hat{N}}$ using ϵ -neighborhood graph.
- $\mathbf{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$, where $D_{ii} = \sum_{i} A_{ii}$.
- Compute the first k eigenvectors $\mathbf{u}_1, \cdots, \mathbf{u}_k$ of L and define the matrix $\mathbf{U} \in \mathbb{R}^{\hat{N} \times k} = \begin{bmatrix} \mathbf{u}_1^T, \cdots, \mathbf{u}_k^T \end{bmatrix}^T$
- Perform *k*-means on the rows of **U** and obtain the clusters C_1, \cdots, C_k .

COMPRESSIVE SPECTRAL IMAGING

The first two experiments were performed to show the sensitivity of the main parameters of the proposed method. Figure (a) and (b) show the overall accuracy as a function of the number of neighbors and scales in the proposed method, respectively.

VISUAL AND QUANTITATIVE RESULTS

- Sense and simultaneously reduce the data-dimension.
- For the *l*-th spectral band, and using K shots, the acquisition scheme is expressed as

 $\mathbf{y}_l = \mathbf{H}\mathbf{f}_l,$

where $\mathbf{H} = [\mathbf{h}_1^T, \cdots, \mathbf{h}_K^T]$, $\{\mathbf{h}_k\}_1^K$ is the vector form of the coding pattern used in the *k*-th shot.

• In general,

 $\mathbf{y} = \mathbf{H}\mathbf{f},$

where $\hat{\mathbf{H}} = \mathbf{I}_L \otimes \mathbf{H}$, is a block diagonal matrix.

Table 2. Quantitative Results of different design approaches
 of Δ for the Pavia University Image

REFERENCES

(2)

(3)

A. C. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. F. Kelly, & R. G. Baraniuk. Video Compressive Sensing for Spatial Multiplexing Cameras Using Motion-flow Models. In SIAM Journal on Imaging Sciences (2015).