Tampere University

High-Resolution Water Segmentation for Autonomous Unmanned Surface Vehicles: A Novel Dataset and Evaluation

Jussi Taipalmaa, Nikolaos Passalis, Honglei Zhang, Moncef Gabbouj, Jenni Raitoharju Faculty of Information Technology and Communication Sciences, Tampere University Finland

ABSTRACT

- One of the most vital and fundamental tasks in order to automate and ensure the safety of USV operations is to perform water segmentation.
- The main contribution of this paper is collecting, annotating and releasing a publicly available high-resolution dataset for developing deep learning algorithms for water segmentation in Nordic lake environment.

DATASET

- 600 Full-HD quality images and hand-annotated segmentation masks
- 3 sub-sets, 200 images each:
 - Channel area
 - Docking situations
 - Open water
- Furthermore, we adapt a deep learning algorithm previously applied for road segmentation into water segmentation, and propose and evaluate a novel lightweight fully convolutional neural network architecture, fully adapted to the needs of water segmentation from high-resolution images.
- Recorded: December 2017 February 2018
- Location: Lake Pyhäjärvi, Tampere, Finland
- Device: GoPro Hero 4 Session

Test No	. Training set	Test set	Training samples	Test samples	Se	Sp	Prc	Acc	F ₁
1	channel	open + dock	200	400	0.9795	0.9777	0.9831	0.9787	0.9813
2	dock	channel + open	200	400	0.9935	0.9841	0.9865	0.9892	0.9900
3	open	channel + dock	200	400	0.9845	0.9401	0.9553	0.9654	0.9699
4	channel + dock	open	400	200	0.9980	0.9939	0.9945	0.9960	0.9962
5	channel + open	dock	400	200	0.9937	0.9428	0.9612	0.9727	0.9772
6	dock + open	channel	400	200	0.9892	0.9851	0.9882	0.9874	0.9887
7	all	all	300	300	0.9960	0.9931	0.9947	0.9947	0.9953
8	all	channel	300	100	0.9957	0.9939	0.9952	0.9949	0.9954
9	all	dock	300	100	0.9958	0.9883	0.9924	0.9928	0.9941
10	all	open	300	100	0.9967	0.9963	0.9967	0.9965	0.9967

channel = dataset from the channel, dock = dataset with dokking situations, open = dataset with open water,

all = all data with 50/50 training/testing split

Comparison between VGG-16 and Lightweight model

VGG-16

Difficult situations and adjusting threshold

Specificity can be improved by raising the threshold.

Model	speed (ms)	Se	Sp	Prc	Acc	Fi
VGG-16	221	0.9960	0.9931	0.9947	0.9947	0.9953
Lightweight	170	0.9962	0.9928	0.9944	0.9948	0.9953

Water segmentation in different situations

