Generic Bounds on the Maximum Deviations in Sequential/Sequence Prediction (and the Implications in Recursive Algorithms and Learning/Generalization)

Song Fang Quanyan Zhu

New York University

Overview

- 1. Generic bounds on maximum deviations in sequential/sequence prediction
- 2. Viewpoint of "entropic innovations"
- 3. Implications in recursive algorithms and learning/generalization
- Entropy

- ► Innovations approach
- Information theory
- Estimation/prediction theory

Prediction Bound

Consider a stochastic process $\{\mathbf{x}_k\}, \mathbf{x}_k \in \mathbb{R}$. Denote the 1-step ahead prediction of \mathbf{x}_k by $\hat{\mathbf{x}}_k = f_k(\mathbf{x}_{0,\dots,k-1})$. Then,

$$\mathbb{D}_{\max}\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}\right)\geq 2^{h\left(\mathbf{x}_{k}\mid\mathbf{x}_{0,\dots,k-1}
ight)-1}$$

where equality holds iff $\mathbf{x}_k - \hat{\mathbf{x}}_k$ is uniform and $I(\mathbf{x}_k - \hat{\mathbf{x}}_k; \mathbf{x}_{0,...,k-1}) = 0$.

► The maximum deviation:

$$\mathbb{D}_{\max}\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}
ight) riangleq \max_{\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}
ight)\in \mathrm{supp}\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}
ight)}\left|\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}-\mathbb{E}\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k}
ight)
ight|$$

► For unbiased estimation:

$$D_{\max}(\mathbf{x}_k - \widehat{\mathbf{x}}_k) = \max_{(\mathbf{x}_k - \widehat{\mathbf{x}}_k) \in \text{supp}(\mathbf{x}_k - \widehat{\mathbf{x}}_k)} |\mathbf{x}_k - \widehat{\mathbf{x}}_k|$$

Fundamental limitation of prediction; holds for arbitrary causal predictors

Viewpoint of "Entropic Innovations"

With $\widehat{\mathbf{x}}_k = f_k(\mathbf{x}_{0,...,k-1})$, it holds that

$$I\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k};\mathbf{x}_{0,...,k-1}
ight)=I\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k};\mathbf{x}_{0}-\widehat{\mathbf{x}}_{0},\ldots,\mathbf{x}_{k-1}-\widehat{\mathbf{x}}_{k-1}
ight)$$

Implication 1: Recursive Algorithms

Consider a recursive algorithm given by

$$\mathbf{x}_{k+1} = \mathbf{x}_k + f_k \left(\mathbf{x}_{0,\dots,k}
ight) + \mathbf{n}_k$$

where $\mathbf{x}_k \in \mathbb{R}$ denotes the recursive state, and $\mathbf{n}_k \in \mathbb{R}$ denotes the noise. Then,

$$D_{\max}(\mathbf{x}_{k+1} - \mathbf{x}_k) \ge 2^{h(\mathbf{n}_k | \mathbf{n}_{0,...,k-1}) - 1}$$

where equality holds iff $\mathbf{x}_{k+1} - \mathbf{x}_k$ is uniform and $I(\mathbf{x}_{k+1} - \mathbf{x}_k; \mathbf{n}_{0,...,k-1}) = 0$.

General Form

Consider a recursive algorithm given by

$$g_{k+1}\left(\mathbf{x}_{0,\ldots,k+1}\right) = f_k\left(\mathbf{x}_{0,\ldots,k}\right) + \mathbf{n}_k$$

where $\mathbf{x}_k \in \mathbb{R}$ denotes the recursive state, and $\mathbf{n}_k \in \mathbb{R}$ denotes the noise. Then,

$$D_{\max}\left[g_{k+1}\left(\mathbf{x}_{0,...,k+1}
ight)
ight] \geq 2^{h(\mathbf{n}_{k}|\mathbf{n}_{0,...,k-1})-2}$$

where equality holds iff $g_{k+1}(\mathbf{x}_{0,\dots,k+1})$ is uniform and $I(g_{k+1}(\mathbf{x}_{0,\dots,k+1});\mathbf{n}_{0,\dots,k-1}) = 0.$

► First order:

$$g_{k+1}\left(\mathbf{x}_{0,\ldots,k+1}\right) = \mathbf{x}_{k+1} - \mathbf{x}_{k}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + f_k\left(\mathbf{x}_{0,\dots,k}\right) + \mathbf{n}_k$$

Second order:

$$\mathbf{g}_{k+1}\left(\mathbf{x}_{0,\ldots,k+1}
ight) = \mathbf{x}_{k+1} - 2\mathbf{x}_k + \mathbf{x}_{k-1}$$

$$\mathbf{x}_{k+1} = 2\mathbf{x}_k - \mathbf{x}_{k-1} + f_k\left(\mathbf{x}_{0,\dots,k}\right) + \mathbf{n}_k$$

► Hence,

$$I\left(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k};\mathbf{x}_{0,\dots,k-1}\right)=0$$

$$(\mathbf{x}_{k}-\widehat{\mathbf{x}}_{k};\mathbf{x}_{0}-\widehat{\mathbf{x}}_{0},\dots,\mathbf{x}_{k-1}-\widehat{\mathbf{x}}_{k-1})=0$$

Prediction Bound for Stationary Processes

Consider a stationary process $\{\mathbf{x}_k\}, \mathbf{x}_k \in \mathbb{R}$. Denote the 1-step prediction of \mathbf{x}_k by $\widehat{\mathbf{x}}_k = f_k(\mathbf{x}_{0,\dots,k-1})$. Then,

$$\liminf_{k \to \infty} \operatorname{D}_{\mathsf{max}} \left(\mathbf{x}_k - \widehat{\mathbf{x}}_k \right) \geq 2^{h_\infty(\mathbf{x}) - 1}$$

where equality holds if $\{\mathbf{x}_k - \hat{\mathbf{x}}_k\}$ is asymptotically uniform and $\lim_{k\to\infty} I(\mathbf{x}_k - \hat{\mathbf{x}}_k; \mathbf{x}_{0,\dots,k-1}) = 0.$

Perspective of entropic innovations:

$$\lim_{k \to \infty} I\left(\mathbf{x}_{k} - \widehat{\mathbf{x}}_{k}; \mathbf{x}_{0,...,k-1}\right) = 0$$

$$\bigoplus_{k \to \infty} I\left(\mathbf{x}_{k} - \widehat{\mathbf{x}}_{k}; \mathbf{x}_{0} - \widehat{\mathbf{x}}_{0}, \dots, \mathbf{x}_{k-1} - \widehat{\mathbf{x}}_{k-1}\right) = 0$$

$$\bigoplus$$

 $\{\mathbf{x}_k - \widehat{\mathbf{x}}_k\}$ is asymptotically white (strictly speaking, independent)

Optimal Predictor is "Uniformizing-Whitening"

$$\liminf_{k\to\infty} \mathrm{D}_{\max}\left(\mathbf{x}_k - \widehat{\mathbf{x}}_k\right) = 2^{h_{\infty}(\mathbf{x})-1}$$

holds iff the innovation process $\{\mathbf{x}_k - \hat{\mathbf{x}}_k\}$ is asymptotically white uniform.

May feature an "uniformizing-whitening" principle

Implication 2: Learning and Generalization

- Consider training data as input/output pairs $(\mathbf{x}_i, \mathbf{y}_i), i = 0, ..., k$, where $\mathbf{x}_i \in \mathbb{R}^n$ is input and $\mathbf{y}_i \in \mathbb{R}$ is output
- Let the test input/output pair be $(\mathbf{x}_{test}, \mathbf{y}_{test})$, and denote the "prediction" (extrapolation/interpolation...) of \mathbf{y}_{test} by $\hat{\mathbf{y}}_{test} = f(\mathbf{x}_{test})$, where $f(\cdot)$ can be any learning algorithm
- Since the parameters of $f(\cdot)$ are trained using $(\mathbf{x}_i, \mathbf{y}_i), i = 0, ..., k$, eventually $\widehat{\mathbf{y}}_{\text{test}} = f(\mathbf{x}_{\text{test}}) = g(\mathbf{x}_{\text{test}}, \mathbf{y}_{0,...,k}, \mathbf{x}_{0,...,k})$

Then, for any learning algorithm $f(\cdot)$,

$$ext{D}_{\mathsf{max}}\left(\mathbf{y}_{ ext{test}} - \widehat{\mathbf{y}}_{ ext{test}}
ight) \geq 2^{h\left(\mathbf{y}_{ ext{test}} | \mathbf{x}_{ ext{test}}, \mathbf{y}_{0,...,k}, \mathbf{x}_{0,...,k}
ight) - 1}$$

where equality holds iff $\mathbf{y}_{\text{test}} - \widehat{\mathbf{y}}_{\text{test}}$ is uniform and $I(\mathbf{y}_{\text{test}} - \widehat{\mathbf{y}}_{\text{test}}; \mathbf{x}_{\text{test}}, \mathbf{y}_{0,\dots,k}, \mathbf{x}_{0,\dots,k}) = 0.$

Summary

- Fundamental limitations (generic bounds on maximum deviation) in prediction, recursive algorithms, and learning/generalization
- ► Future: How to achieve/approach?
- T. M. Cover and J. A. Thomas Elements of Information Theory John Wiley & Sons, 2006
- T. Kailath, A. H. Sayed, and B. Hassibi Linear Estimation *Prentice Hall*, 2000.
- P. P. Vaidyanathan
 The Theory of Linear Prediction
 Morgan & Claypool Publishers, 2007
- S. Fang, J. Chen, and H. Ishii
 Towards Integrating Control and Information Theories: From Information-Theoretic Measures to Control Performance Limitations
 Springer, 2017