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__ Overview [ Implication 1: Recursive Algorithms

1. Generic bounds on maximum deviations in sequential /sequence prediction Consider a recursive algorithm given by
2. Viewpoint of “entropic innovations” Xk1 = Xk + fi (Xo,...k) + Nk
3. Implications in recursive algorithms and learning/generalization where x, € R denotes the recursive state, and ny € R denotes the noise. Then,
Dmax (xk+1 - xk) 2 2h(nk|n0 """ k-1)—1
> Entropy » Innovations approach | | 7
> Information theory > Estimation /prediction theory where equality holds iff x41 — Xk is uniform and / (X411 — Xk; No__k—1) = O.

T e

: : Consider a recursive algorithm given b
Consider a stochastic process {xx},xx € R. Denote the 1-step ahead 5 & y

prediction of xy by Xx = fx (X0 x—1). Then, 8k+1 (X0, k+1) = fx (X0, k) + Nk
Dimax (Xx — Xk) > Dh(Xilxo... k1)1 where x,x € R denotes the recursive state, and n, € R denotes the noise. Then,
where equality holds iff x, — X is uniform and / (xx — Xk; %o k—1) = 0. Dmax [gk+1 (X0, k+1)] > 2h(nilno...k-1)-1

where equality holds iff gx+1 (Xo... k+1) is uniform and

» The maximum deviation: I (g1 (Xo. ki1) Mo k1) =0

Dmax (Xk — /)Zk) é _ max N |Xk — ik — K (Xk — S(\k)|
(%) Enupp () > First order:

» For unbiased estimation:
8k+1 (Xo,...,k+1) = Xk+1 — Xk
Dmax (Xk — Xk) = (x5 )emax( 20 ‘Xk — Xk|
Xk—X su Xk—X
k—Xk ) ESUPP(Xk—Xk Xki1 = Xk + Fk (Xo,...,k) + Ny
» Fundamental limitation of prediction; holds for arbitrary causal predictors
» Second order:

. . » . . ” 8k+1 (Xo,...,k+1) = Xp41 — 2Xk + Xg—1
Viewpoint of “Entropic Innovations

With Rk = fi (Xo._ k_1), it holds that Xir1 = 2%k = Xpe-1 + fie (Xo,...) + M
[ (Xk — Xk X0, k—1) = | (Xk — Xk; X0 — X, -+ -, Xk—1 — Xk—1)
» Hence, Implication 2: Learning and Generalization
I (X — Xk Xo,..k-1) =0 . . . | .
- Consider training data as input/output pairs (x;,y;),i =0, ..., k, where
0 x; € R"is input and y; € R is output

I (Xk — Xk X0 — X -+, Xk—1 — Xk—1) = 0 - Let the test input/output pair be (Xtest, Ytest), and denote the “prediction”

(extrapolation /interpolation...) of Yiest by Yiest = f (Xtest), Where f (+) can

— . be any learning algorithm
Prediction Bound for Stationary Processes . : : :
- Since the parameters of f (-) are trained using (x;,y;),i =0,...,k,

Consider a stationary process {xx} ,xx € R. Denote the 1-step prediction of x4 eventually Yiest = f (Xtest) = & (Xtest Yo... ks X0.... k)
by Xx = fi (xo,....k—1). Then, Then, for any learning algorithm f (+),
||knl>|or<1)f Dmax (Xk — S(\k) Z 2h°°(x)_1 Dmax (ytest _ /y\test) Z 2h(ytest|xtest>y0 ..... k:Xo0,... k)—1
where equality holds if {xx — Xy} is asymptotically uniform and where equAaIity holds iff Yiest — Yiest is uniform and
Iimk_mo / (Xk — ;(\k; xO,...,k—l) = 0. / (ytest — Ytest: Xtest ¥0.,..., k> xO,...,k) = 0.

» Perspective of entropic innovations:

e
lim [ (xx — Xk; X0, k—1) =0

k—o0
1 » Fundamental limitations (generic bounds on maximum deviation) in
prediction, recursive algorithms, and learning/generalization
lim /(Xk—Xk;Xo—Xo,...,Xk_l—Xk_l):0 ]
k—00 » Future: How to achieve/approach?

)

{xx — X} is asymptotically white (strictly speaking, independent)
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holds iff the innovation process {xx — X} is asymptotically white uniform. B S e U e, e .
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» May feature an “uniformizing-whitening” principle



