Quantized Variational Bayesian Joint Channel Estimation and Data Detection for Uplink Massive MIMO Systems with Low Resolution ADCs Sai Subramanyam Thoota[†] Chandra R. Murthy[†] Ramesh Annavajjala* [†]Department of ECE, Indian Institute of Science, Bangalore, India (thoota@iisc.ac.in, cmurthy@iisc.ac.in) *College of Computer and Information Science, Northeastern University, Boston, MA, USA (ramesh.annavajjala@gmail.com)

Motivation

- Massive MIMO: key technology for 5G • Power consumption of ADC increases exponentially with bit width \implies Need for coarse quantization • Pilots and data are both quantized • Prefect CSIR: not practical
- Soft symbol estimates necessary in coded communication systems

Bayesian Network Model

Variational Bayesian Inference

• Mean field theory framework • Fully factorized approximate posterior • Marginals of \mathbf{X}_d and \mathbf{H} inferred

Approximate Posterior

 $p(\mathbf{Z}_p, \mathbf{Z}_d, \mathbf{X}_d, \mathbf{H} | \mathbf{Y}_p, \mathbf{Y}_d) \approx q(\mathbf{Z}_p)q(\mathbf{Z}_d)q(\mathbf{X}_d)q(\mathbf{H})$

Contributions

- Joint channel estimation and data detection as a statistical inference problem
- Variational Bayes algorithm to infer the marginal distributions of the transmitted symbols and the channel
- Symbol error probability performance evaluation

System Model

Variational Bayes Joint Channel Estimator and Detector

Evidence Lower Bound

 $\mathcal{L}(q) = \ln p(\mathbf{Y}_p, \mathbf{Y}_d, \mathbf{Z}_p, \mathbf{Z}_d, \mathbf{X}_d, \mathbf{H} | \mathbf{X}_p, \boldsymbol{\beta}, \sigma) - \mathsf{KL}(q \| p)$

Find $q(\mathbf{Z}_p, \mathbf{Z}_d, \mathbf{X}_d, \mathbf{H})$ to minimize $\mathsf{KL}(q \| p)$

Computing approximate marginals

 $\ln q (h_{nk}) \propto \left\langle \ln p \left(\mathbf{Z}_p | \mathbf{X}_p, \mathbf{H}; \sigma^2 \right) + \ln p \left(\mathbf{Z}_d | \mathbf{X}_d, \mathbf{H}; \sigma^2 \right) + \ln p \left(\mathbf{H} | \boldsymbol{\beta} \right) \right\rangle$ $\ln q \left(x_{d,kt} \right) \propto \left\langle \ln p \left(\mathbf{Z}_d | \mathbf{X}_d, \mathbf{H}; \sigma^2 \right) + \ln p \left(\mathbf{X}_d \right) \right\rangle$ $\ln q \left(\mathbf{z}_{d,t} \right) \propto \left\langle \ln p \left(\mathbf{Y}_d | \mathbf{Z}_d \right) + \ln p \left(\mathbf{Z}_d | \mathbf{H}, \mathbf{X}_d; \sigma_m^2 \right) \right\rangle$

 $q(h_{nk}) \implies$ Complex normal distribution $q(x_{d,kt}) \implies$ Boltzmann distribution $q(\mathbf{z}_{d.t}) \implies$ Truncated complex normal distribution

Simulation Results

Simulation Setup: $N_{\text{RX}} = 128, K = 32$, QPSK modulation

 $\mathbf{Z}_p = [\mathbf{z}_{p,1}, \dots, \mathbf{z}_{p, au_p}] = \mathbf{H}\mathbf{X}_p + \mathbf{W}_p$ $\mathbf{Z}_d = [\mathbf{z}_{d,1}, \dots, \mathbf{z}_{d,\tau_d}] = \mathbf{H}\mathbf{X}_d + \mathbf{W}_d$

Quantized Received Signal

 $\mathbf{Y}_{p} = \mathcal{Q}\left(\mathbf{Z}_{p}
ight), \quad \mathbf{Y}_{d} = \mathcal{Q}\left(\mathbf{Z}_{d}
ight)$

Existing Receivers

MMSE

- Suboptimal for quantized systems MAP
- Computationally intractable
- Evidence function hard to compute
- Necessitates approximate inference

Goal: Joint channel estimation and data detection for massive MIMO systems with low-res-ADCs Algorithm: 1. Variational Bayes inference based channel estimator and data detector 2. Detector performance proportional to data duration

Advantages

Achieves higher data rate than conventional linear receivers Low computational complexity Guaranteed convergence to a local optimum