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Introduction
• Annotation (tagging) of facial images with

names can be done through label propaga-
tion by using a small set of annotated facial
images and spreading the name labels from
this set to the unlabeled ones.

• Annotation of facial images in a video stream
that becomes available on-line is a task where
data evolve over time.

• In this case, classical facial image annotation
via label propagation till time instance t+ 1
must be done from scratch rather than using
the results obtained at t.

• In such cases incremental label propagation
can be used to reduce computational com-
plexity.

• A novel incremental label propagation ap-
proach is presented, aiming to speed-up
Multiple-graph Locality Preserving Projec-
tions - Cluster-based Label Propagation
(MLPP-CLP) algorithm [1].

[1] O. Zoidi, A. Tefas, N.Nikolaidis, I.Pitas, Person
identity label propagation in stereo videos, IEEE
Transactions on Multimedia, vol 16(5), pp: 1358-
1368, 2014.

Method Overview
• We split the video in intervals ntT, nt =
1, . . . , Nt.

• We perform face detection/tracking in the
first video interval and manually label a num-
ber of facial images (e.g. 5%) in it.

• Label propagation is conducted in this inter-
val and the process is repeated for consecu-
tive time intervals in an incremental way by:
– updating in every step the respective fa-

cial image similarity matrix W with the
additional pairwise similarities

– calculating the propagation solution by
inverting matrix I−aS in an incremental
block-wise manner based on the Wood-
bury matrix identity.

MLPP-CLP
Assume:

• a set of labeled facial images
XL = {xi, i = 1, . . . ,ml}

• a label set
L = {lj , j = 1, . . . , Q}

• a set of unlabeled facial images
XU = {xi, i = 1, . . . ,mu}

• their union
X = {x1, ...,xml ,xml+1, ...,xM},M = ml +mu

Information about labeled data is given by matrix Y:

Yij =

{
1, if node i is labeled by label j
0, otherwise. (1)

A symmetric facial image similarity matrix W is con-
structed.
Then, vectors fi, i = 1, ...,M are calculated that assign
a score for every possible person label to facial image
i, defining the matrix F = [fT1 , ..., fTM ]T ∈ RM×Q.
F is calculated by solving a minimization problem lead-
ing to the following solution:

F = (1− a)(I− aS)−1Y, (2)

where S = D−1/2WD−1/2, and D is the diagonal de-
gree matrix, Dii =

∑
j Wij .

A facial image label is assigned to facial image i ac-
cording to:

yi = argmax
j∈1,...,Q

[f1
j , . . . , f

M
j ]. (3)

MLPP-CLP (Cont’d)
The approach can be extended to multiview (e.g.
stereo) facial images or data with K representa-
tions:

F = (1− a)

(
I− a

∑
k

τkSk

)−1
Y. (4)

where τk, k = 1,...,K is the weight that corre-
sponds to the k -th data representation and Sk =
D−1/2WkD−1/2.
A method for computing the weights τk and pro-
viding dimensionality reduction (MLPP-CLP) was
introduced in [1].

Incremental Label Propagation
Assume:

• M initial facial images in the set XM =
{x1, . . . ,xM} in time interval [0, ntT ]

• m new labeled and unlabeled facial images in
interval [ntT, (nt + 1)T ]
Xin = {xM+1, . . . ,xM+m}

The result is a new image data set XM+m =
{x1,x2, . . . ,xml

, . . . ,xM ,xM+1, ..,xM+m}.
The incremental similarity matrix is:

W(nt+1) =

[
W(nt) W′

W′T Wm

]
Wm: matrix with pairwise similarities between
the new facial images in Xin.
W′: matrix with pairwise similarities between the
new m facial image entries and (previous)M facial
images, already used in W(nt).
Incremental matrix S(nt+1) appearing in (2), (4):
S(nt+1) = D−1/2(nt+1)W

(nt+1)D−1/2(nt+1) =

=

[
D

′−1/2
(nt)

W(nt)D
′−1/2
(nt)

D
′−1/2
(nt)

W′D
′−1/2
m

D
′−1/2
m W′TD

′−1/2
(nt)

D
′−1/2
m WmD

′−1/2
m

]

=

[
S

′(nt) S
′

S
′T S

′

m

]

where D(nt+1) =

[
D

′

(nt) 0
0 D

′

m

]
and D

′

(nt)D
′

m are

appropriate diagonal matrices.
Incremental block-wise inversion of matrix
I − aS(nt) in (2), (4), based in the Woodbury
matrix identity:

(I− aS(nt+1))−1 =

[
V B
C D

]−1
=

=

[
V−1 +V−1BZ−1CV−1 −V−1BZ−1

−Z−1CV−1 Z−1

]
,

where V = I − aS
′(nt),B = −aS′,C = BT =

−aS′T ,D = I− aS
′

m , Z = (D−CV−1B)

Computational Complexity
Computational complexity per video interval:
Non-Incremental (MLPP-CLP):

• Similarity matrix construction: O((M +
m)2) ' O(M2) for m�M

• Propagation solution (2), (4): O(2M2+M3+
M2Q) ' O(M3)

INCREMENTAL LP:
• Similarity matrix construction: O(m2) +
O(2Mm) ' O(Mm)

• Propagation solution (2), (4): O(M2.3727 +
M2Q)

Experimental Evaluation
• Experiments on three stereoscopic movies of total

duration of more than 6 hours. Facial images
were derived by face detection and tracking.

• A subset of the detected/tracked facial images
(5398, 3498, 4954 for the 3 movies respectively)
has been used in the experiments.

• Each movie is segmented into unequal intervals,
each containing the same number of images m,
m = 250, 500, 1000. 5% of the images in each
interval are manually labeled.

• A speedup by a factor of 2.5 to 5.58 for m =
1000, 2.35 to 5.7 for m = 500 and 3.2 to 5.98
for m = 250 in similarity matrix construction
was observed for the 3 movies, depending on the
facial images in each movie.

• A speedup of 2.55 in Movie 1, 2.95 in Movie 2 and
1.66 in Movie 3 was observed in label propagation
solution execution (for all m values).

• Classification accuracy gains of 2.5% (on aver-
age) were observed due to the difference in the
calculation of the similarity matrix in the incre-
mental approach.

Fig.1 Similarity matrix calculation time for m = 250

Fig.2 Label propagation solution time for movie 3.

Conclusions
• An incremental method for propagating person

identity labels on facial images extracted from
stereo, but also monocular, videos was intro-
duced.

• A significant speedup is obtained. The classifica-
tion accuracy was also improved in most cases.

• The proposed approach can be also used for
speeding up label propagation in other applica-
tions where data are evolving over time.
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