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WAVE PHYSICS INFORMED DICTIONARY LEARNING IN ONE DIMENSION

Introduction Approach
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n In Structural health monitoring, data-driven 
approaches  to model behavior of waves to detect and 
locate damages has gained popularity.

n Recent works have used popular dictionary learning 
algorithm, K-SVD, to learn overcomplete dictionary 
for waves propagating in a metal plate.

n Instead of treating the K-SVD as a black box, we 
create a novel modification by enforcing domain 
knowledge.

n We look at how regularizing the K-SVD with one-
dimensional wave equation affects the dictionary 
atoms

KSVD as a Black box

Wave-informed KSVD

The Physical Model: Domain Knowledge

q Wave Equation:  !
"#

!$"
= &

'"
!"#
!("

q Space-time separability assumption:
𝑓 𝑥, 𝑡 = 𝑑 𝑥 𝑞 𝑡

q Obtaining an eigenvalue problem by taking the Fourier 
transform (over time) of the wave equation with the 
space-time separability assumption:
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q The discretized form of the Eigenvalue problem (to 
enforce physical consistence):

𝑳𝑫𝒊 = 𝑔;𝑫𝐢 where, 𝐿>$> =
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(e.g.)
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Optimization Approach
q Alternatively update 𝑿 and 𝑫 as shown in the algorithm 

block.
q Additionally the parameter 𝑔; is also updated in each 

step and set 𝛾; ∝
&
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Results

Algorithm: Wave Informed K-SVD

Conclusions
Observations and Future work
• Cleaner dictionary atoms from Wave-informed KSVD 

hints an enforcement of structure to the atoms.

• Future work will include modifying modern dictionary 
algorithms for wave data.

• Also, part of future work will include enforcing the wave 
constraint to sparse autoencoder
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Data Model (fixed string):
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Where 𝜔; = 𝑣𝑘, where 𝑣 is the velocity of the wave
And 𝑛 𝑥, 𝑡 is white Gaussian noise.  

Algorithm  Details:
o 𝛾^ ≈ 10`, where 𝛾; = ⁄𝛾^ 𝑔;0.
o Sparsity 𝑠 = 1 in Orthogonal matching pursuit part of the 

algorithm.
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