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INTRODUCTION

Phaseless Measurement:

yi = |〈x, fi〉|2 + ni 0 ≤ i ≤M − 1

• x ∈ CN unknown data
• fi ∈ CN measurement vector
• ni denotes additive noise

Figure 1: [Adopted from Candès, Li and Soltanolkotabi,
2014]

In noiseless case, estimation of x can be achieved
up to x# = cx with |c| = 1.

Applications:

• X-ray crystallography
• Astronomical Imaging
• Electron microscopy
• Computational optical imaging
• Blind deconvolution

Conjecture: 4N − 4 measurements are necessary
for exact recovery on CN .

PARTIAL NESTED FOURIER SAMPLER

• Recovering x from ACFx(k): Non-unique
due to spectral factorization.

• Equivalent representation

yi =
(
fTi ⊗ fHi

)
Vec

(
xxH

)
+ ni

Difference sets arise naturally in magnitude-
only-Fourier measurements.

Definition 1 (Partial Nested Fourier Sampler:)
A Partial Nested Fourier Sampler (PNFS) of dimen-
sion N , consists of measurement vectors given by

f
(N)
i =

1
4
√
4N − 5

[z1i , z
2
i , · · · zN−1i , z2N−2i ]T , (1)

where zi = ej2πmi/4N−5,mi ∈ [0, 4N − 6].

PNFS reveals the support of x by obtaining sin-
gletons:

Recovery Guarantee for Non-Sparse x: If
ni ≡ 0, M = 4N − 5 PNFS measurements are
sufficient to exactly recover non-sparse x.

When x is sparse and no prior knowledge is avail-
able, we use randomized version of PNFS

Definition 2 (Randomized PNFS) A Random-
ized PNFS (R-PNFS) consists of measurement vec-
tors

f (R-PNFS)
i = [IN,N v] f

(N+1)
i

where v ∈ CN is a random vector with independent
entries, and f

(N+1)
i is defined in (1) for dimension

N + 1.

A CANCELLATION BASED ALGORITHM AND MAIN RESULT

Algorithm:

1. Collect two sets of (noisy) phaseless measure-
ments y(1),y(2) ∈ CM̃ as

y
(1)
i =

∣∣∣(fR-PNFS
i

)H
x?
∣∣∣2 + n

(1)
i

y
(2)
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∣∣∣(f̃ (N+1)
i
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(2)
i (2)

Assuming |n(k)
i | ≤ η, k = 1, 2. M = 2M̃ .

2. Compute the difference measurements ∆y =

y(1) − y(2). The key step is to notice that

∆y = Zx̂ + ∆n (3)

where x̂ ∈ C4N−1 given by

[x̂]m =



|xN+1|2 m = 0

0 m = 1, 2, · · · , N − 1

x2N−mx̄N+1 m = N, · · · , 2N − 1

[x̂]−m m < 0

3. Obtain an estimate of x̂ as the solution to the
following l1-minimization problem:

min
θ
‖θ‖1 subject to ‖∆y − Zθ‖2 ≤ η

√
M̃ (P1)

4. Given the solution x̂# to (P1), the estimate
for each entry of x? is given by x#q =

[x̂#]2N−q/x
#
N+1 for 1 ≤ q ≤ N and x#N+1 =

|
√

[x̂#]0|.

Introducing a second sampling vector f̃
(N+1)
i ∈

CN as

f̃
(N+1)
i = [IN,N 0] f

(N+1)
i

The algorithm is summarized on the left.

Theorem 1 Given x? ∈ CN with sparsity s, and the
measurement vector v ∈ CN , using (2) where the in-
dices mi of f (N+1)

i , i = 1, 2 · · · ,M are chosen uni-
formly at random from [0, 4N − 2]. If M̃ ≥ c0(2s +
1) log(4N − 1) log(ε−1) and |xN+1|2 > c1

√
2s+ 1η,

with probability at least 1 − ε, the estimates x#q of
x?q , 1 ≤ q ≤ N , satisfy

N∑
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|x?q − ejφ0x#q | ≤
c1
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√
2s+ 1η

η
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 1√
1− c1

√
2s+1η
|xN+1|2

− 1


where xN+1 = vHx?, φ0 = argφ∈[0,2π)xN+1/|xN+1|,
and c0, c1 are universal constants.

With R-PNFS, M = O(s logN) is sufficient for sta-
ble recovery by implementing cancellation based
algorithm.

SIMULATION RESULTS

Figure 2: Amplitudes and complex plane representa-
tions of the nonzero part of the original and recovered
data in noiseless case.

Figure 3: Phase transition plots. (Top) noiseless case.
(Bottom) noisy case. The red line represents M =
3s logN for both.


