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Motivation

• Eigen-decomposition problem
• repeatedly solving a sequence of problems of 

form

• Trust-region subproblem
• using the quadratic model to approximate the 

original objective function

Image from https://optimization.mccormick.northwestern.edu/index.php/Trust-region_methods

https://optimization.mccormick.northwestern.edu/index.php/Trust-region_methods


Graph Partitioning as Constrained Quadratic Optimization

• Bipartition: cut a weighted, undirected graph into two subgraphs
• roughly equals in size

• the total weight of the cut edges is smallest

• Express the weight of a cut as a quadratic function of binary variables

Relaxed Regularized



Problem Formulation

• ∙ is the Euclidean norm

• 𝑨 ∈ ℝ𝑛×𝑛 is symmetric but not necessarily positive semidefinite

• Non-convex objective function with a non-convex constraint



Solution Properties

• Stationary points

• Local minimum

• Global minimum

Global maximum
𝛾 = 6, 𝜆𝑛−1 = 1

Local maximum
𝛾 = 2, 𝜆𝑛−1 = 1

Local/Global minima
𝛾 = 1, 𝜆𝑛−1 = 8/3

𝛾(𝑥∗)

Global minima

𝜆𝑛(𝐴)

Local minima

𝜆𝑛−1(𝑥∗)

Saddle points Global maximaLocal maxima

𝜆1(𝐴)𝜆1(𝑥∗)



2D-Examples

★ Stationary pointsGlobal maximum
𝛾 = 5, 𝜆𝑛−1 = 1

Global minimum
𝛾 = −1, 𝜆𝑛−1 = 1

Global minimum
𝛾 = −3, 𝜆𝑛−1 = 1

Local minimum
𝛾 = −1, 𝜆𝑛−1 = 1



Related Work

• Quadratic Constrained Quadratic Program with only one constraint 
(QCQP-1)
• semidefinite relaxation (SDR) 

• Lagrangian relaxation

 𝑂(𝑛2)!

• Trust-region subproblem
• solvable when 𝑛 is small (by matrix factorizations)

• for large 𝑛, iterative methods are considered
• Parameterized eigenvalue problem [Sorensen’97]

• Sequential Subspace Method (SSM) [Hager’01]



Projected Gradient Descent

• Fixed point

Power method 𝜶 → ∞



Stationary Point versus Fixed Point

★ Stationary point

o Fixed point



Convergence Analysis

• Taylor Series Expansion of the Projection

• Recursion on the error vector

𝜌𝛼 If 𝜌𝛼 < 1 and 𝛿(0) is sufficiently small, the error 
series behaves similar to a geometric series



Rate of Convergence

• Our results:

• PGD converges linearly locally to any strict 
local minimum with appropriate choice of 𝛼

• The asymptotic rate of convergence is given by

• Optimizing over the step size yields faster convergence



Theoretical analysis of 𝜌𝛼 𝑥∗
𝑡

Numerical Evaluation

Initialize 𝑥(0) near the local minimum 𝑥∗



Escape from Local Minima

• For 𝛼 >
2

𝜆1 𝑥∗ +𝛾(𝑥∗)
, the error series w.r.t

𝑥∗ tends to diverge since 𝜌𝛼 > 1

• Define 𝑔 𝛼, 𝑥∗ = 𝛼(𝜆1 𝑥∗ + 𝛾(𝑥∗))

• Conjecture: 

Global minimum 𝑥⋆

Local minimum 𝑥∗

Assume there exists sufficiently large 𝛼 satisfying 𝑔(𝛼, 𝑥⋆) < 2 for any global minimum 𝑥⋆ and 
𝑔 𝛼, 𝑥∗ ≥ 2 for any strict local minimum 𝑥∗. Then PGD with step size 𝛼 converges to one of the 
optimal solutions 𝑥⋆ at an asymptotic geometric rate of 𝜌_𝛼 (𝑥⋆).



Initialize 𝑥(0) near the local minimum 𝑥∗



Conclusion and Future Works

• Conclusion
• showed PGD converges linearly to a strict local minimum in its neighborhood

• provided the closed-form expression for asymptotic convergence rate

• identified ways of achieving optimal rate of convergence near the optimum

• Future works
• minimizing a quadratic over an ellipsoid

• acceleration of gradient projection using momentum

• analysis of convergence to a continuum of optima



THANK YOU!
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