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Introduction
In this paper, we reformulated conventional beamforming (CBF) as linear
in the covariance matrix of the weights to motivate the use of the sample
covariance matrix (SCM) as a feedforward neural network (FNN) input [1,
2]. A deep FNN was developed for estimating direction of arrival (DOA)
of multiple incoherent sources.

Conventional beamforming
For measured acoustic data p∈CN×1 on an N–element array, plane wave
replicas w∈CN×1 are often assumed,
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N
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ω
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where P is estimated across L snapshots. Under this assumption, CBF can
be written as linear in terms of the data sample covariance estimate P and
weight covariance W:
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H
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WR and WI are the real and imaginary components of W, with PR and
PI for P. (·)H is the matrix complex conjugate transpose. P and W are
Hermitian.

Feed–forward neural network
A feedforward neural network (FNN) is trained on T samples each with
D features, xt ∈ RD×1, t = 1, ..., T . The training labels representing ar-
rival angle are one-hot encoded. The hidden layer activations are rectified
linear units (ReLu). The output function is a likelihood–like distribution
over M classes,

y
j
pred =f (wj>xt), j=1, ...,M (4)

where wj a weight vector. If f (·) is linear, FNN can be used to solve for
W in (3), for example with Keras [3] software, by minimizing J ,

ŵm=arg min
wm


T∑
t=1

(−J(yt,true,ypred(xt)))

 (5)

The FNN model may be extended to a fully–connected model by adding
hidden layers. Then f () is the softmax function over M angles.

Simulations

Training, validation, and test sets were generated for two plane wave
sources. The training data is noiseless (σ2 = 0) and includes all com-
binations of θ1, θ2 for θ = [−90◦, 90◦),∆θ = 1◦. A validation set
and a test set were generated from 1000 Monte Carlo simulations with
θ1, θ2 ∈ U{−90◦, 89◦},∆θ = 1◦. Gaussian random noise is added with
signal–to–noise ratio (SNR)

SNR = 10 log10

(‖p1‖22
σ2

)
,

σ2 = ‖p1‖22 × 10−
SNR
10 . (6)

Source incoherence

Plane wave sources with random phase, Sk = |S|eiφk, φk ∈ U [−π, π], are
incoherent if φj 6= φk, j 6= k. With few or single snapshots (L = 1), the
SCM inputs to our FNN depend on the random source phases, φk. For
example, for 2 sources,
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where n,m = 1, ..., N and ∆φ = φ1− φ2. Table 1 compares FNN trained
with coherent and incoherent sources. Each set contains 16110 samples.

Table 1: Accuracy for a test set with 1000 random simulations across SNR. FNN was
trained on single coherent, single incoherent, and 5 incoherent training sets.

SNR Coherent Incoherent Incoherent, 5 Sets
0 dB 0.30 0.34 0.21

10 dB 0.80 0.81 0.76
20 dB 0.95 0.93 0.94
50 dB 1 0.97 0.99
∞ 1 0.86 0.98

At high SNR, increasing the number of incoherent training samples im-
proves the incoherent DOA accuracy nearly to 1. These results indicate
that the FNN learns to predict DOA from SCM features despite varia-

tion caused by the random source phase. Our training data is noiseless
(σ2 = 0), resulting in decreased performance at low SNR.

Hyperparameter selection

The validation set was used to compare models with different number of
hidden layers (Table 2) in order to optimize the model for noiseless and
noisy data.

Table 2: Validation accuracy vs number of FNN hidden layers, with 1024 hidden nodes.

Layers 0 dB 10 dB 20 dB 100 dB Training
1 0.22 0.48 0.68 0.99 1.0
2 0.17 0.60 0.87 0.99 1.0
3 0.22 0.0.7 0.92 0.99 1.0
4 0.22 0.71 0.93 1.0 1.0
5 0.24 0.70 0.93 1.0 1.0
6 0.17 0.68 0.92 1.0 1.0
7 0.14 0.56 0.89 1.0 1.0
8 0.14 0.57 0.88 1.0 1.0

At high SNR, increasing the model depth (hidden layers) improves DOA
accuracy indefinitely. At lower SNR (<20 dB), DOA accuracy decreases
for FNN models deeper than 5 layers. Based on these results, we apply
the FNN with 5 hidden layers to unseen test data.

Accuracy

The accuracy between the estimated peaks, θ̂t and the true angles θt,j is

Accuracy =
1

K · T

K∑
j=1

T∑
t=1

1
[ ∣∣∣θt,j − θ̂jt ∣∣∣ ≤ 1◦

]
(8)

where 1[x] is the indicator function.

Notation

n: array index, Sk: source amplitude, K: number of sources
ω: source frequency, c: phase speed, `: array spacing
ω = (2π × 200) rad/s, c = 1500 m/s, ` = 2.5 m, N = 20 elements.

Two source direction of arrival with deep network
A 5–layer deep FNN trained with 5 incoherent training sets was used to track two noiseless, incoherent source
tracks (Fig. 1a). The FNN had 512 hidden nodes per layer and was trained for 1000 epochs.
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Figure 1: (a) Test set DOA estimation of two noiseless incoherent sources from two–peak detection along two simultaneous source
tracks. Missing detections (NaNs) are shown at the top of the grid. (b) Ambiguities of the two–peak detection at θ1 = 1◦, θ2 = −2◦.

The FNN trained on 5 incoherent training sets had a high accuracy for tracking 2 incoherent sources with high
SNR. CBF and sparse Bayesian learning (SBL) [4] were compared to FNN for the single–snapshot scenario. At
the source track crossing, FNN distinguishes both peaks, while CBF and SBL fail for single snapshot (Fig. 1b). A
NaN indicates that only one of two peaks were predicted.

Multisource direction of arrival with deep network
In realistic applications the number of sources will not be known a priori. We thus retrained the FNN model to
predict a random number of incoherent sources by randomly selecting the training data.

We generated 106 noiseless, incoherent training samples. Each sample contained K plane wave sources at angles
θk, with K ∈ U [1, 10] and θk ∈ [−90◦, 90◦),∆θ = 1◦.
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Figure 2: (a) Test set DOA estimation of five noiseless, incoherent sources for FNN trained on a random number of sources. (b)
Ambiguities of the five–peak detection at θ1 = −82◦, θ2 = 81◦, θ3 = −68◦, θ4 = −30◦, and θ5 = 80◦.

The randomly trained FNN was tested on tracks of 5 noiseless, incoherent sources and compared to CBF and SBL
(Fig. 2), with source angles θ1 = [−90◦, ..., 89◦], θ2 = [89◦, ...,−90◦], θ3 = [−68◦, ...,−68◦], θ4 = [−30◦, ...,−30◦],
θ5 = [80◦, ..., 80◦]. FNN achieved 89% accuracy while SBL achieved 83%.

Experimental two source direction of arrival
As an experimental test, we estimated the azimuth of the Swellex–96 S95 deep source tow and a loud interferer
(Fig. 3) to the North horizontal line array [5, 6]. The North array was arranged in a slight arc, allowing for left–right
discrimination by high resolution methods. The true array positions were used to compute the weights for FNN
training data, SBL, and CBF. The SCM was constructed at 79 Hz, with ∆f = 0.8 Hz.

0 180 360
Azimuth ( ° )

0

10

20

30

40

50

60

Ti
m

e 
(m

in
)

(a)

0 180 360
Azimuth ( ° )

(b)

0 180 360
Azimuth ( ° )

(c)

-25

-20

-15

-10

-5

0
dB

Towed Source
Interferer
Endfire to array
Broadside to array

FNN SBL CBF

Figure 3: L = 10 snapshot (a) FNN, (b) SBL, and (c) CBF ambiguities for the Swellex–96 S95 source tow event (circles) and a loud
interferer (stars). Array endfire (solid) and broadside (dashed) directions are shown. SBL and FNN were convolved with a 3x3 unit filter
for improved visualization.

Figure 3 shows the ambiguity surfaces for FNN, SBL, and CBF, normalized to their maximum at each time. In
total, there were 3120 test samples, with the SCM averaged over L = 10 snapshots. FNN achieved resolution
similar to SBL, demonstrating its potential in experimental applications.
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