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Background: Recurrent Neural Networks

● Highly-parallel connectionist networks

● Learn a nonlinear mapping by minimizing an objective via gradient descent as 

driven by data

● Successfully applied to various domains:
○ e.g. NLP, Genomics, Computer vision

● Demand copious amount of compute & memory resources
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Mixture-of-Experts network with >137 billion parameters 
(~548 GB memory with 32-bit floats).

Shazeer, N. et al. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. 
arXiv preprint arXiv:1701.06538 (2017).



Motivation

How can neural networks be tractably deployed on edge devices 
with constrained resources?
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https://openautomationsoftware.com/blog/iiot-edge-computing-vs-cloud-computing/ 

https://openautomationsoftware.com/blog/iiot-edge-computing-vs-cloud-computing/


Reservoir Computing

● Reservoir computing (RC)
○ Stochastic dynamics
○ Nonlinear responses

● Echo state networks (ESN)
○ Rate-base neurons
○ Dynamics & memory dictated by spectral radius
○ Teacher signal only trains readout weights
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Jaeger, H. (2001). Short term memory in echo state networks. GMD Report 152, German National 
Research Center for Information Technology.
Lukosevicius, Mantas. “A Practical Guide to Applying Echo State Networks.” Neural Networks: Tricks of the 
Trade (2012).



Mod-DeepESN

● Flexible topology for ESNs

● Elongated memory capacity

● Captures multi-scale dynamics of temporal data

● Standard components:
○ Randomly initialized weights
○ Tanh activations
○ Training using the pseudo-inverse (no backpropagation)
○ Training maps states matrix to a forecasted value
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Z. Carmichael, H. Syed, and D. Kudithipudi, “Analysis of Wide and Deep Echo State Networks for 
Multiscale Spatiotemporal Time Series Forecasting,” in Proceedings of the 7th Annual Neuro-inspired 
Computational Elements Workshop, ser. NICE ’19. New York, NY, USA: ACM, 2019, pp. 7:1–7:10.



Tucker Decomposition

● Tucker: generalization of SVD to N-way tensors

● Factor matrices are orthogonal

● Rank reduction (tensor compression) possible by discarding 

Eigenvectors of each mode

● Not all modes require decomposition
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Kolda, Tamara G., and Brett W. Bader. "Tensor decompositions and applications." SIAM review 51.3 
(2009): 455-500.



Tucker-Decomposed Mod-DeepESN

● Decomposition and compression of reservoir states as a tensor

● Orientations:
○ NSNt x NLNR

○ NSNt x NL x NR

○ NSNt x NLB x NLD x NR (shown on right)

○ NSNt x NLB x NLDNR

○ NSNt x NLD x NLBNR

● Compress along the final mode
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Training Comparison

Conventional

● SVD pseudo-inverse

● Explicit solution unstable with full states 

matrix for real-valued forecasting tasks

Compressed (Proposed)

● Explicit pseudo-inverse

● Overhead: SVD in HOOI algorithm
○ Replace with probabilistic algorithm - 

efficient for truncated SVD
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N. Halko, P. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for 
constructing approximate matrix decompositions,” SIAM Review, vol. 53, no. 2, pp. 217–288, 2011.



Training Comparison: Complexity

Conventional

● Complexity bottleneck: (NSNt)
2

○ Size of data squared

● Low complexity for small number of samples

Compressed (Proposed)

● Complexity bottleneck: k3

○ Truncation size cubed

● Generally lower complexity here
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Evaluation

● Multi-scale nonlinear time series

○ Akin to sensory data observed by edge devices

● Compare states orientations and Tucker parameters

● Relative error to original network (average over 10 runs)

● Measurement of training FLOPs

○ Solely the FLOPs for training readout, no reservoir computations considered
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Mackey Glass

● Classical chaotic time series benchmark for forecasting of 

dynamical systems

● Nonlinear differential equation generated using 4th order 

Runge-Kutta method

● 84-step-ahead forecasting, 10,000 samples
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Mackey Glass Results
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Melbourne

● Minimum daily temperature series of Melbourne, Australia, 

1981 - 1990

● 1-step-ahead forecasting task

● ~3,600 samples (days)
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Melbourne Results
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Conclusions

● Tensorization can improve forecasting performance

● Training complexity greatly reduced (~95%)

● Indicates these ideas are suitable for edge deployment

● Future work:
○ Extend to other weight matrices of Mod-DeepESN
○ Evaluate with more complex tasks
○ Tensor regression
○ Other decompositions: CP, tensor-train, Tucker2
○ Compare directly with deep learning counterparts
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karlstratos.com/drawings/drawings.html 
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Questions?

Contact: zjc2920@rit.edu
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