

Insights into the behaviour of multi-task deep neural networks for medical image segmentation

Lukasz T. Bienias¹

Juanjo R. Guillamon¹, Line H. Nielsen², Tommy S. Alstrøm¹

¹Department of Applied Mathematics and Computer Science Technical University of Denmark, Richard Petersens Plads 324, 2800 Kgs. Lyngby, Denmark ²Department of Health Technology Technical University of Denmark, Ørsteds Plads 345C, 2800, Kgs. Lyngby, Denmark

Introduction	Prior art	Methods	Results	Conclusions

Gland segmentation

Why gland image is different than natural image?

- 1. Heterogeneous shape
- 2. Anisochromasia causes background noise
- 3. Coalescence problem

Multi-task learning for medical image segmentation

Introduction

Prior art

Methods

Results

Conclusions

Gland Segmentation

1. Does loss weighting influence the final performance?

2. How do we perform instance segmentation?

3. Do we really need **specialized networks**?

DTU Mask R-CNN

$\stackrel{\text{DTU}}{\rightleftharpoons} SA-FCN, \text{ post-processing}$

I. Contours subtracted from the f/b prediction.

II.Small elements removed.

III.Opening operation - erosion.

IV.Opening operation - dilation, holes filled.

V. Connected-component labelling.

Comparison of post-processing

1. Our post-processing method, has significantly improved the final performance.

2. SA-FCN performance strongly depends on the postprocessing techniques.

Multi-task learning, loss weighting

Multi-task learning

1. In this particular case, the ratio value for loss weighting does not significantly affect the performance of the model.

2. Contour decoder helps f/b decoder to ignore irrelevant parts of the image and improve the performance.

3. There is no visible assistance from the f/b decoder for the contour decoder.

SA-FCN versus Mask R-CNN

DTU

SA-FCN versus Mask R-CNN

SA-FCN versus Mask R-CNN

1. Mask R-CNN implementation achieves higher performance than our SA-FCN implementation.

2. Mask R-CNN implementation requires less postprocessing actions as the SA-FCN implementation.

1. Post-processing can have a great impact on the final performance of the deep learning architecture.

2. Mask R-CNN obtains comparable results to current state-of-the-art, for gland segmentation task.

3. It is worth to use generic models instead of design complex architectures when tackling new domains.

Comparison of Mask R-CNN and SA-FCN

	F1 Score			Dice Index			Hausdorff Distance							
	A		В		A		В		A		В		RS	WRS
	Score	R	Score	R	Score	R	Score	R	Score	R	Score	R		
Our Mask R-CNN	0.888	4	0.817	3	0.874	4	0.808	4	72.08	4	134.28	4	23	11.75
Our SA-FCN	0.860	6	0.761	6	0.851	6	0.827	3	77.33	6	119.13	3	30	16.5
SA-FCN from the article	0.921	1	0.855	1	0.904	2	0.858	1	44.73	2	96.97	1	8	4.5
$CUMedVision1 \\ (DCAN)$	0.868	5	0.769	4	0.867	5	0.800	5	74.59	5	153.64	6	30	15
$CUMedVision2 \\ (DCAN)$	0.912	2	0.716	7	0.897	3	0.781	7	45.41	3	160.34	7	29	11.25
Multichannel	0.893	3	0.843	2	0.908	1	0.833	2	44.12	1	116.82	2	11	5.25
FCN	0.788	7	0.764	5	0.813	7	0.796	6	95.05	7	146.24	5	37	19.75