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01 Compressive sensing model 

The basic insight of compressive sensing (CS) is that a small number 
of linear measurements can be used to reconstruct sparse signals, 
thus the information we extract from the signal is given by:     

y Ax y Ax e or (With noise perturbation) 

Figure: The compressive sensing process and its domains 



01 Compressive sensing model 

Compressed sensing theory mainly includes 
three parts: 
A. Sparse representation of signals 
B. Design measurement matrix 
C. Design signal recovery algorithm 

Some typical applications in CS theory: 
A. Image information security 
B. Wireless sensor network (WSN)  
C. Magnetic resonance imaging (MRI) 
D. Compressive spectral imaging 

Question: How to recovery  the signal from its 
measurements? 

(a) The original data cube (b) Reconstructions from 
six shots using Boolean 
coded aperture 



01 Compressive sensing model 

Given the observation (measurements) of a k-sparse signal from the 
underdetermined linear system, such signal can be recovered by 
solving a minimization problem: 
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One of the practical and tractable alternatives to this problem can be 
expressed as: 
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Question: How to solve this 1-minimization problem? 
1. Bayesian framework 
2. Greed pursuit or iteration algorithms 
3. Linear programming  and so forth 
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01 Compressive sensing model 

Studies in  [1] [2] have shown that a k-spare signal can be exactly 
recovered by solving (2) provided that measurement matrix satisfies 
the restricted isometry property (RIP) conditions, such that   
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(1 ) (1 )K Kx Ax x    

Question: Dose RIP conditions can apply to the signal which is spare in 
overcomplete dictionaries? 

(3) (0,1)k with 

Many types of random measurement matrices have small RIC with 
high probability given that the number of measurements is large 
enough 

[1] Candes E J, Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. 
[2] Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements[J]. Communications on 
Pure & Applied Mathematics, 2010, 59(8):1207-1223.  
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02 Measurements guarantees 

There are numerous signal of interest are sparse in an overcomplete 
dictionary. More specific,  We assume that signal can be sparely using 
the linear combination of such dictionary, as  

x Da with ,~n dD R n d (4) 

Question: why we use the overcomplete dictionary ? 

The D-RIP can be used as a natural extension to the standard RIP such like 
2 2 2
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(1 ) (1 )K KDa ADa Da     (5) 

It is well know that random matrices satisfy the D-RIP condition (5)  with 
the number of measurements on the order of  

log( / )k d k (6) 



02 Measurements guarantees 

First, the random variable has its corresponding expected values; that is  
2 2
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Next, the random variable is strongly concentrated about its expected 
value, which is give by 
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   (8) 

Thus, our approach can be divided into three steps: 

Construct 
points 

Apply (8) to 
point 

Extend to all 
signals 



02 Measurements guarantees 
Lemma: Let A be a random matrix satisfies (8), Then we have:   
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Choose a set of Q points such that 
  (12 / )kQ 
apply the union bound to  (8), extend the result with probability exceeding 
the right side of (10) such that  

(11) 

0
2 2 2 ( /2)

2 2 2
Pr( ( / 2) ) 4(12 / )

c mkAx x x e
  

   with / 2  (12) 

Question: How to extend 
such result to two cases? ( / )k
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02 Measurements guarantees 
According to previous steps, the minimal number of measurements only 
in a single K-dimensional subspace can be expressed as 
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(14) 

We then use (9) to go beyond a single k-dimensional subspace in order 
to acquire the minimal number of measurements when the basis is the 
orthonormal basis and overcomplete dictionary, respective, such that 
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Reason: there are different subspace in two case.  
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03 Algorithm design 
In general, greedy or iterative related algorithms can break the recover 
problem into subproblems: 
A. Identifying the columns of basis 
B. Projecting onto that subspace 

An optimal recovery strategy is to solve the problem via  lease-squares: 

2
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More specific, we can compute from (11):  
1ˆ ˆ ˆˆ ˆ( ) ,~ 0c
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  (16) 

Question: How to implement the GP based algorithm when the basis is 
not an orthonormal basis? 



03 Algorithm design 
To this end, we envision two natural extension of the canonical GP based 
algorithms, the flow of the general algorithm can be organized as follow:  

Task: This general algorithm is quite flexible 
and can be invoked in multiple way.  

Question: How to find the optimal support in 
identify step first? 



03 Algorithm design 
The key identification step in our algorithm requires finding the best k-
sparse representation of a vector limited by the dictionary constraints: 

When using some classical CS recovery algorithms including GP and1-norm 
minimization methods for obtaining the near-optimal projection. 

2
argminopt x P x   (17) 

Due to the NP hard problem, we use the near-optimal to approximate 
the optimal such that  
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03 Algorithm design 

Such projection  is required in the identifying 
step and another such projection is required 
in the Prune step, respectively.  

Which CS algorithms can be used for the 
projection and its support acquisition? 
1. 1-norm minimization algorithm : linear 

programming (LP) 
2. Greedy pursuit (GP) algorithms: Matching 

Pursuit and related algorithms 
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04 Simulation results 

 
Parameter setting: 
1. Length of the signal: 
2. The measurement matrix whose dimension is: 
3. The sparse number is: 
4. The overcomplete dictionary is 4 times DFT dictionary: 
       

256n 

64 256
8k 

256 1024D R 



04 Simulation results 

 

(a) (b) 
Case (a): The non-zero entries of the sparse vector are random positioned and well 
separated 
Case(b): The non-zero entries of the sparse vector are random positioned and cluster 
together 



Conclusion  

 
1. The number of measurements required guarantees the signal, 

which is sparse in an over complete dictionary can be recovered 
from the measurements with high probability. 

2. A near-optimal projection strategy is proposed in our algorithm for 
the near optimal support acquisition such that obtaining the signal 
estimation. 
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