Efficient Capon-based approach exploiting temporal windowing for electric network frequency estimation

George Karantaidis and Constantine Kotropoulos

Department of Informatics, Aristotle University of Thessaloniki, Greece gkarantai@csd.auth.gr, costas@csd.auth.gr

1. Overview

- The proposed Electric Network Frequency (ENF) extraction framework:
- 1. introduces an efficient approach based on the filter-bank Capon spectral estimator with **temporal windowing**;
- 2. exploits the Toeplitz structure of the covariance matrix to obtain the **Gohberg-Semencul** factorization of the inverse covariance matrix by means of Krylov matrices for fast matrix inversion;
- 3. employs the **Parzen window** at the stage preceding spectral estimation for the first time.
- ► Parzen window is also employed within the Short-Time Fourier Transform (STFT) method.
- ► The impact of different temporal windows is studied.
- The proposed approach employing the Parzen window is compared against state-of-the-art methods for ENF extraction.
- We study whether pairwise differences between the maximum correlation coefficient delivered by proposed fast Capon ENF estimation method employing temporal windows and that of other state-of-the-art ENF estimation methods are statistically significant.
- Experiments are conducted on two real-life datasets.

6. Experimental Evaluation

- ► The proposed approach was compared against state-of-the-art approaches.
- A systematic study was also carried out in order to examine the impact of the window on both datasets. Four different windows along with four different frame lengths were employed.
- A correlation coefficient of 0.9990 is obtained for the proposed approach, when a frame length of 20 sec is employed. This value exceeds the state-of-the-art linear prediction estimation.
- When shorter frame lengths of 5 and 10 sec are employed, the accuracy gets higher and reaches 0.9991, while for the other methods accuracy drops as the frame length gets shorter.

Table 1: Correlation coefficient for various frame lengths - Data 1

Frame length (in sec)	1	5	10	20
Proposed with Parzen window	0.9990	0.9991	0.9991	0.9990
ML [6]	0.8826	0.9852	0.9953	0.9977
Linear Prediction [7]	0.9651	0.9959	0.9976	0.9984
Welch[2]	0.9847	0.9989	0.9989	0.9983
Weighted Spectrogram [7]	0.8255	0.9873	0.9944	0.9966

The Parzen window yields the highest accuracy among approaches and is not affected by the frame

2. Window Selection and Estimation Procedure

- Window selection was not thoroughly investigated within ENF estimation, where the rectangular window has been used exclusively as a temporal window.
- Here, we employ temporal windowing. It is shown through extensive experiments that the selection of window function pays off.
- Proper window selection provides finer spectral resolution and boosts the accuracy of frequency estimation.
- ► The *N*-point Parzen window is defined as:

$$w(n) = \begin{cases} 1 - 6\left(\frac{|n|}{N/2}\right)^2 + 6\left(\frac{|n|}{N/2}\right)^3 & 0 \le |n| \le (N-1)/4 \\ 2\left(1 - \frac{|n|}{N/2}\right)^3 & (N-1)/4 \le |n| \le (N-1)/2. \end{cases}$$
(1)

- The general scheme for ENF estimation proposed in [1] was followed employing the parametrization suggested in [2].
- 1. The raw signal is properly filtered. A sharp zero-phase band-pass FIR filter with $C_1 = 1001$ and
- $C_2 = 4801$ coefficients was applied around the 3rd harmonic of the signal recorded from power mains and around the 2nd harmonic of the speech signal, respectively.
- 2. A tight band-pass frequency range of 0.1 Hz is employed. The frequency is estimated per frame.
- 3. Between consecutive frames, there exists 1 sec shift, which is translated to 441 samples for the downsampled sampling frequency of $441 H_z$.
- 4. Each frame is then multiplied by a temporal window.
- 5. The maximum periodogram value of each frame, which corresponds to an approximate ENF estimation $\omega_{q_{\text{max}}}$ is obtained.
- 6. A quadratic interpolation is employed and a quadratic model is fit to the logarithm of the estimated power spectrum [3].

length at all.

 Table 2: Correlation coefficient for various windows - Data 1

Frame length (in sec)	1	5	10	20
Parzen	0.9990	0.9991	0.9991	0.9990
Hamming	0.9989	0.9991	0.9990	0.9988
Kaizer	0.0086	0.0495	0.0438	0.9976
Rectangular	0.0047	0.0798	0.0689	0.9975

- Our approach outperforms the existing ML approach and the high resolution MUSIC method.
- It is lagging behind the pure linear prediction method without the additional denoising procedure with respect to the correlation coefficient for about 0.0015.

 Table 3: Correlation coefficient for various frame lengths - Data 2

Frame length (in sec)	10	33
Proposed with rectangular window	0.8663	0.9351
ML [6]	0.9059	0.9319
Linear Prediction [7]	0.9213	0.9366
MUSIC [2]	0.9087	0.9318
Weighted Spectrogram [7]	0.8787	0.9125

Table 4: Correlation coefficient for various windows - Data 2

Frame length (in sec)	5	10	20	33
Parzen	0.7063	0.7773	0.8413	0.8785
Hamming	0.7453	0.8128	0.8703	0.8987
Kaizer	0.8081	0.8663	0.9035	0.9228
Rectangular	0.8092	0.8663	0.9036	0.9351

The accuracy obtained using the STFT for various windows is presented in Fig. 1. Parzen window yields highly accurate results even when an 1 sec frame length is employed. This accuracy approaches 0.9990, which means that the STFT approach with proper temporal window can outperform state-of-the-art methods.

.

In order to evaluate the accuracy of the estimated frequencies, one employs the maximum correlation coefficient between the estimated ENF and the ground truth one.

3. Datasets

- The first dataset, denoted as Data 1, was recorded by connecting an electric outlet directly to the internal sound card of a desktop computer.
- The second one, denoted as Data 2, comprises of a speech recording captured by the internal microphone of a laptop computer.
- The original datasets were sampled at 44.1 kHz using 16 bits per sample. Afterwards, the raw recordings were downsampled at 441 Hz, using proper anti-aliasing filtering.
- Apart from the fundamental frequency of 60 Hz, the second and the third harmonics were also maintained to perform experiments.
- Regarding the first dataset, only the third harmonic was used, because it provides the best results compared to the other two.
- In the speech recording, the second harmonic was used, because the other two suffered from extremely low SNR.

4. Proposed Method

- ► The periodogram can be interpreted as a filter bank approach, which uses a band-pass filter whose impulse response is given by the standard Fourier transform vector $\begin{bmatrix} 1, e^{-i\omega}, \dots, e^{-i(N-1)\omega} \end{bmatrix}^T$.
- The Capon method, is another filter bank approach based on a data-dependent filter. The Capon spectral estimate is given by:

$$\hat{\phi}(\omega) = rac{m+1}{\mathrm{a}^*(\omega)\,\hat{\mathrm{R}}^{-1}\,\mathrm{a}(\omega)}.$$

(4)

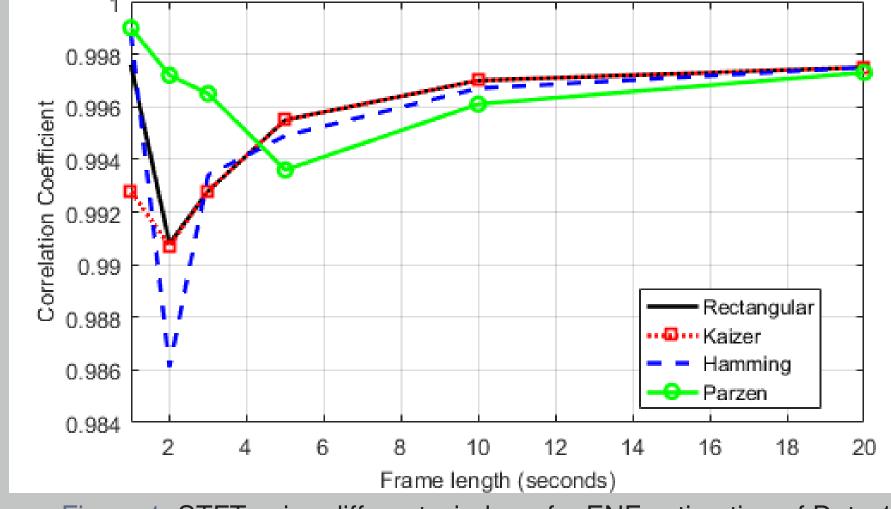


Figure 1: STFT using different windows for ENF estimation of Data 1.

- In order to determine whether the correlation coefficient of the proposed method is significantly different from that of other methods (H_1 : $c_1 \neq c_2$), hypothesis testing was applied.
- Fisher transformation, $z = 0.5 \ln \frac{1+c}{1-c}$ was employed for each pair of correlation coefficients under examination.
- For significance level 95%, the test statistic $\theta = \sqrt{K-3} (z_1 z_2)$ was outside the region $-1.96 < \theta < 1.96$, where K = 1800.
- The null hypothesis was rejected for every pair of comparisons. The differences between the correlation coefficients were significant at confidence level of 95%.

6. Conclusions

- Resorting to the Toeplitz structure of the covariance matrices and exploiting Krylov matrices, a fast and efficient he ENF estimation has been developed, which yields higher accuracy compared to the state-of-the-art methods in power recordings.
- A trade-off between speed and accuracy is observed, which is of crucial importance in forensic applications.

 $\hat{\mathbf{R}}$ is an estimate of the auto-covariance matrix

$$\hat{\mathbf{R}} = \frac{1}{N-m} \sum_{t=m+1}^{N} \begin{bmatrix} \tilde{y}(t) \\ \vdots \\ \tilde{y}(t-m) \end{bmatrix} [\tilde{y}^*(t), \dots, \tilde{y}^*(t-m)].$$
(3)

where $\tilde{y}(t) = y(kF_s + t - 1) w(t - \frac{N+1}{2}), t = 1, 2, ..., N, F_s$ is the sampling frequency, and $k \in \mathbb{N}$. Here, m = 10 and $N = LF_s$, where L is the frame length in sec.

► Eq. (2) is computed for dense frequency samples $\omega_q = \frac{2\pi q}{Q}$, q = 0, 1, ..., Q - 1 with Q = 4N every sec. ENF is estimated by the angular frequency sample $\omega_{q_{\text{max}}}$ where the Power Spectral Density (PSD) of Eq. (2) attains a maximum for $q \in [0, \frac{Q}{2} - 1]$ and $f_k = \frac{\omega_{q_{\text{max}}}}{2\pi} F_s$. The Capon method has been found to be able to resolve fine details of PSD, making it a superior alternative of periodogram-based methods for ENF estimation.

- The proposed approach exploits the Toeplitz structure of the covariance matrix R_N in order to reduce the computational complexity of the inversions included in the process of Capon spectral estimation using GS factorization [4].
- It is not limited to Toeplitz structures, but is expanded to low displacement rank matrices, where the displacement representation of any square matrix A is defined as [5]:

$$\nabla_{\mathbf{D}_N,\mathbf{D}_N^T}\mathbf{A} = \mathbf{A} - \mathbf{D}_N\mathbf{A}\mathbf{D}_N^T$$

with \mathbf{D}_N being a lower triangular matrix.

- The proposed approach provides state-of-the-art results, even when very short frame lengths are employed.
- The choice of the window is not a trivial task. Even a STFT achieves very good results for properly chosen window of very short length.

References

- [1] A. J. Cooper, "An automated approach to the electric network frequency (ENF) criterion theory and practice," *Int. J. of Speech Language and the Law*, vol. 16, no. 2, 2009.
- [2] G. Karantaidis and C. Kotropoulos, "Assessing spectral estimation methods for electric network frequency extraction," in *Proc.* 22nd Panhellenic Conf. Informatics, pp. 202–207, 2018.
- [3] O. Ojowu, J. Karlsson, J. Li, and Y. Liu, "ENF extraction from digital recordings using adaptive techniques and frequency tracking," *IEEE Trans. Inf. Forensics and Security*, vol. 7, no. 4, pp. 1330–1338, 2012.
- [4] G. Glentis and A. Jakobsson, "Efficient implementation of iterative adaptive approach spectral estimation techniques," *IEEE Trans. Signal Process.*, vol. 59, no. 9, pp. 4154–4167, 2011.
- [5] M. Xue, L. Xu, and J. Li, "IAA spectral estimation: Fast implementation using the Gohberg-Semencul factorization," *IEEE Trans. Signal Process.*, vol. 59, no. 7, pp. 3251–3261, 2011.
- [6] D. Bykhovsky and A. Cohen, "Electrical network frequency (ENF) maximum-likelihood estimation via a multitone harmonic model," *IEEE Trans. Inf. Forensics and Security*, vol. 8, no. 5, pp. 774–753, 2013.
- [7] X. Lin and X. Kang, "Robust electric network frequency estimation with rank reduction and linear prediction," ACM Trans. Multimedia Com. Commun. and Appl., vol. 14, no. 4, pp. 1–13, 2018.