



Power Delay Profile in Coordinated Distributed Networks: User-Centric v/s Disjoint Clustering

Hussein A. Ammar and Raviraj Adve

University of Toronto, Department of Electrical and Computer Engineering, Toronto, Canada ammarhus@ece.utoronto.ca, rsadve@comm.utoronto.ca

4. Major Contributions

 \succ We analyze the PDP for both user-centric and disjoint

 \succ We derive the PDP and analyze the additional channel delay spread due to the geographic distribution of the

 \succ This is the first work that analyzes the signal PDP in coordinated distributed networks.

6. SDS: Disjoint Clustering

 \succ We approximate the cell area as a circle with radius ω ; hence the average number of RRHs per cell of area \mathcal{B} is:

$$= \mathbb{E}[\Phi_b(\mathcal{B})] = \int_0^{2\pi} \int_0^{\omega} \lambda_b r \, \mathrm{d}r \, \mathrm{d}\theta = \pi \lambda_b \omega^2$$

> Biggest possible distance between the nearest serving RRH and the furthest serving RRH to the user is 2ω . \succ The maximum delay spread for disjoint clustering:

$$\sigma_{D_{\beta}} = \begin{cases} \sigma_{\rm rms}, & \text{if } \beta = 1\\ \frac{2\sqrt{\frac{\beta}{\pi\lambda_b}}}{c} + \sigma_{\rm rms} & \text{if } \beta \neq 1, \end{cases}$$

7. SDS: User-centric Clustering

> For a fixed cluster radius of β the additional delay is ω/c . > For cluster composed of the nearest β RRHs, we take a probabilistic measure of induced additional delay spread. \succ Our definition of delay spread is from the distances between the points r^{ℓ} and r^{u} where

$$\nu = \int_{r^{\ell}}^{\infty} f_{R_1}(r_1) \, \mathrm{d}r_1 = \int_0^{r^u} f_{R_{\beta}}(r_{\beta}) \, \mathrm{d}r_{\beta}$$

where $f_{(R_i)}(r_i)$ is the Probability Density Function (PDF) of the distance to the i^{th} RRH, and ν sets a statistical bound (at $\nu=1$, we have $r^{\ell} = 0, r^u = \infty$). $\left| -\ln\left(v\right) \right|$ > With some manipulations: r^{ℓ} –

$$\inf_{r} \beta = 1$$

$$\frac{-r^{\ell}}{c} + \sigma_{rms} \quad \text{if } \beta \neq 1$$

$$r^{u} = \sqrt{\frac{\Gamma^{-1}(\beta, (1-\nu)\Gamma(\beta)}{\pi\lambda_{b}}}$$

8. Power Delay Profile \geq Using the COST207 non-hilly urban profile, i.e., the PDP in disjoint clustering as: $\operatorname{PDP}_{\mathcal{D}_{\beta}}(t) = \mathbb{E}_{\phi_{b}} \left| \sum_{r \in \phi_{b} \cap \mathsf{b}(y,\omega)} p\left(\frac{r}{d_{0}}\right)^{-1} \right|$ > Where $l_1 = \min(\max(d_0 + \mathfrak{D}_m, ct/\omega_0), 2\omega)$ > User-centric clustering: \Box For fixed cluster radius of β RRHs: $PDP_{1,\beta}^{(1)}(t) = 2\pi p d_0^{\alpha} \lambda_b e^{-t/\tau_0} \int_{d_0 + \mathcal{D}_m}^{t_2} r^{-\alpha + 1} e^{\frac{r}{c}/\tau_0} dr$ Where $l_2 = \min(\max(d_0 + \mathfrak{D}_m, ct/\omega_0), \omega)$ \Box For cluster composed of the nearest β RRHs: $\mathrm{PDP}_{1,\beta}^{(2)}(t) =$ $pd_0^{\alpha} \sum_{i=1}^{p} \frac{2(\pi\lambda_b)^{*}}{\Gamma(x)} = 1$ **9. Some Results** + Disioint $- \Theta$ User-centric fixed ω * User-centric β RRH. ν =0.8 $\lambda_{\rm b}$ =20, 5, 1 RRHs/km² 4 5 6 7 8 Nearest Serving RRHs Number Fig. 3: Worst signal delay spread. Fig. 4: User-centric vs Disjoint PDP **10.** Conclusions > User-centric scheme provides an advantage over Disjointclustering in terms of a lower signal delay spread. > Cluster size should be chosen carefully to ensure that the signal delay spread does not become a bottleneck. > This analysis is key to ensuring a chosen Cyclic Prefix (CP) is adequate and to design the subcarrier spacing.

normalized PDP of single Tx is $e^{(-t/\tau_0)}$, with $\tau_0 = 1 \,\mu$ s, and the properties of the PPP we can derive the average

 $= 2pd_0^{\alpha}\lambda_b e^{-t/\tau_0} \int_{d_0+\mathcal{D}_{m}}^{l_1} \cos^{-1}\left(\frac{r^2}{2r\omega}\right) r^{-\alpha+1} e^{\frac{r}{c}/\tau_0} \,\mathrm{d}r \ (9)$

$e^{-t/\tau_0}\int_{0}^{t}$	$\int_{\substack{r_i \\ d_0 + \mathcal{D}_m}}^{\max(d_0 + \mathcal{D}_m, ct\tau_0)} r_i^{-\alpha - 1 + 2i} e^{\frac{\tau_0}{c}r_i - \pi\lambda_b r_i^2} \mathrm{d}r_i$
-----------------------------	---

