

Face Alignment by Deep Convolutional Network with Adaptive Learning Rate

Zhiwen Shao, Shouhong Ding, and Lizhuang Ma Shanghai Jiao Tong University

Applications

Face animation ¹

Face beautification

¹ The two images were downloaded from https://www.mixamo.com/faceplus

Large pose, illumination and expression variations Partial occlusion Low quality

How to solve these problems

Deep convolutional neural network

a small number of training images annotated with landmarks

We propose an effective data augmentation strategy

Translation

Rotation

Original face patch

JPEG compression

Quality

45

75

Data augmentation

Training data are enlarged dozens of times

improve the robustness of landmark detection in the condition of tiny face shift

Rotation

Translation

adapt pose variation of in-plane rotation

JPEG compression

be robust to poor-quality images

Eight convolutional layers followed by two fully-connected layers

Convolution operation:

$$y^j = \sum_i k^{ij} * x^i + b^j$$

Every two continuous convolutional layers connect with a max-pooling layer

Max-pooling operation:

$$y_{j,k}^{i} = \max_{0 \le m,n < h} \{ x_{j \cdot h + m,k \cdot h + n}^{i} \}$$

VGG net: continuous convolutional layers, jointly extract complex features

Batch normalization
$$y = \gamma \frac{x - E(x)}{\sqrt{Var(x)}} + \beta$$

ReLU nonlinearity $y = max(0, x)$ \longrightarrow accelerate training

- > The network input is $50 \times 50 \times 3$ for color face patches
- > The output is predicted coordinates of five landmarks

Shrink the coordinates reduce computational cost

Euclidean loss:

$$L = \frac{1}{2} (f - \hat{f})^2$$

How?

Adaptive learning rate

Adaptive learning rate

Algorithm 1 The training algorithm with adaptive learning rate.

- **Input:** Network N with trainable initialized parameters Θ_0 , training set Ω , validation set Φ , control parameters α , t, k.
- **Output:** Trainable parameters Θ .
- 1: Testing N and calculating the loss L_0 on Φ ;
- 2: Setting the learning rate $\eta = \alpha/L_0$ and calculating the loss L on Ω ;
- 3: while L > t do
- 4: Training N with back propagation (BP) [20] algorithm and calculating L;
- 5: **if** l hasn't been reduced for k iterations **then**

6:
$$\eta = \eta \cdot 0.1;$$

- 7: end if
- 8: end while
- 9: Setting $\eta = \alpha/L$;
- 10: while not convergence do
- 11: Executing step 4 to 7;
- 12: end while

We firstly assign learning rate depended on initial testing loss, to avoid the network link weights changed sharply

Adaptive learning rate

Algorithm 1 The training algorithm with adaptive learning rate.

- **Input:** Network N with trainable initialized parameters Θ_0 , training set Ω , validation set Φ , control parameters α , t, k.
- **Output:** Trainable parameters Θ .
- 1: Testing N and calculating the loss L_0 on Φ ;
- 2: Setting the learning rate $\eta = \alpha/L_0$ and calculating the loss L on Ω ;
- 3: while L > t do
- 4: Training N with back propagation (BP) [20] algorithm and calculating L;
- 5: **if** l hasn't been reduced for k iterations **then**

6:
$$\eta = \eta \cdot 0.1;$$

- 7: end if
- 8: end while
- 9: Setting $\eta = \alpha/L$;
- 10: while not convergence do
- 11: Executing step 4 to 7;
- 12: end while

When network loss was reduced significantly, changing learning rate to be a larger value

Adaptive learning rate

Algorithm 1 The training algorithm with adaptive learning rate.

- **Input:** Network N with trainable initialized parameters Θ_0 , training set Ω , validation set Φ , control parameters α , t, k.
- **Output:** Trainable parameters Θ .
- 1: Testing N and calculating the loss L_0 on Φ ;
- 2: Setting the learning rate $\eta = \alpha/L_0$ and calculating the loss L on Ω ;
- 3: while L > t do
- 4: Training N with back propagation (BP) [20] algorithm and calculating L;
- 5: **if** l hasn't been reduced for k iterations **then**

$$6: \qquad \eta = \eta \cdot 0.1;$$

- 7: end if
- 8: end while
- 9: Setting $\eta = \alpha/L$;
- 10: while not convergence do
- 11: Executing step 4 to 7;
- 12: end while

The algorithm consists of two iterative procedures for adaptive learning rate decrease

Experiments

Datasets and evaluation metric

> Datasets

Evaluation metric: mean error

the distance between estimated landmarks and the ground truths, normalized with the inter-pupil distance, averaged over all landmarks and images

Algorithm discussions

Train our network with adaptive learning rate algorithm VS. Train our network with only one iterative procedure (the

learning rate is gradually reduced from a small value)

Algorithm discussions

➤ The minimal loss are 0.6823 and 0.7938 respectively

The difference of average distance is approximately $\sqrt{0.1115/(\lambda^2) \times 2/5} \approx 1.0559, \lambda = 0.2$

Algorithm discussions

Mean error (%)

Method	LFPW	AFLW
Our algorithm (one iterative procedure)	1.50	8.15
Our algorithm	1.17	7.42

Comparison with other methods

Method	LFPW	AFLW
ESR [7]	5.36	12.4
RCPR [8]	4.58	11.6
SDM [11]	2.26	8.5
cascaded CNN [9]	2.10	8.72
TCDCN [17]	1.33	8.0
Our approach	1.17	7.42

Comparison with other methods

Method	LFPW	AFLW
ESR [7]	5.36	12.4
RCPR [8]	4.58	11.6
SDM [11]	2.26	8.5
cascaded CNN [9]	2.10	8.72
TCDCN [17]	1.33	8.0
Our approach (quick)	1.28	7.86
Our approach	1.17	7.42

Our approach (quick)

Changing convolutional layers:

 $2, 2, 2, 2 \implies 1, 1, 2, 2$

Comparison with other methods

Deep model	Time (Intel Core i5 CPU)
cascaded CNN [9]	120 ms
TCDCN [17]	17 ms
Our approach (quick)	39 ms
Our approach	67 ms

Cascaded CNN

Our approach

More examples

Conclusions

We propose an effective deep convolutional network based on data augmentation and adaptive learning rate

- We achieve state-of-the-art performance
- The data augmentation and adaptive learning rate can also be applied to other problems like face recognition

Demo

Face Alignment by Deep Convolutional Network with Adaptive Learning Rate

Zhiwen Shao, Shouhong Ding, Hengliang Zhu, et al

Thank you!