Incentivizing Crowdsourced Workers via Truth Detection

Chao Huang¹, Haoran Yu², Jianwei Huang^{1,3}, and Randall A Berry²

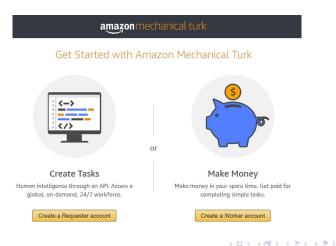
¹The Chinese University of Hong Kong, Hong Kong ²Northwestern University, USA ³The Chinese University of Hong Kong, Shenzhen, China

Crowdsourcing

- Crowdsourcing resorts to crowdsourced workers for solving tasks
 - Crowdsourced workers are semi-skilled, diverse in background, temporally and spatially flexible
 - Boost efficiency and flexibility of task solving
- Examples:
 - Content moderation on platform Steem

Curators

Help your community thrive and grow by upvoting high quality content.


If you discover a post on a Steem-based app and upvote it before it becomes popular, you earn a curation reward. The reward amount will depend on the amount of rewards the post earns over time.

Start Curating

< ロ > < 同 > < 三 > < 三 >

Crowdsourcing

- Crowdsourcing resorts to crowdsourced workers for solving tasks
- Examples:
 - Image labeling on Amazon Mechanical Turk

Chao Huang (CUHK)

GlobalSIP 2019

Crowdsourcing

- Crowdsourcing resorts to crowdsourced workers for solving tasks
- Examples:
 - Peer grading on MOOCs

Incentives in Crowdsourcing

- $\bullet\,$ Crowdsourced workers finish tasks at a cost \to need rewards as incentive
- A naive way: provide rewards based on workload
 - Workers tend to finish many tasks with low effort (low quality)
- Problem: how to elicit efforts and truthful reports from crowdsourced workers?

An "Easy" Case: Verifiable Information

- There exists verifiable information, i.e., ground truth will be revealed
 - E.g., prediction markets: predict winner of an election
- The observable ground truth is used as a basis for incentives
 - E.g., [Y. Luo et al. 2018]

A Hard Case: Unverifiable Information

- Workers' solutions cannot be verified ([B. Waggoner et al. 2014])
 - No ground truth: subjective tasks
 - ► Large cost for ground truth: e.g., peer grading, scholarly peer review

A Hard Case: Unverifiable Information

- Workers' solutions cannot be verified ([B. Waggoner et al. 2014])
 - No ground truth: subjective tasks
 - ► Large cost for ground truth: e.g., peer grading, scholarly peer review

Objective vs. Subjective

- Problem: how to provide incentives without verification?
 - High-quality solution + truthful reporting
 - Tradeoff between quality and cost

Truth Detection

- Use truth detection to induce truthful reports in public good provision context ([I. Krajbich *et al.* 2009])
- Idea: interaction with truth detector implies truthfulness of one's report
 - E.g., pupil dilation, facial expressions, and verbal cues

Application: Border Control

- Hungary, Latvia, and Greece use Automatic Deception Detection System (ADDS) to enhance border control
 - Travelers answer personalized questions on gender, ethnicity, and language through a web-cam
 - Quantify the probability of deceit by analyzing micro expressions

• Task

- $\mathcal{X} = \{-1, 1\}$: type space of a binary task
- $x \in \mathcal{X}$: true type, unknown to workers and platform

э

► 4 3 5 €

• Workers

• \mathcal{N} : worker set, $|\mathcal{N}| = N$

3

<ロト < 同ト < ヨト < ヨト

Workers

- \mathcal{N} : worker set, $|\mathcal{N}| = N$
- ► $x_i^{\text{estimate}} \in \mathcal{X}$: worker *i*'s estimated solution to the task
- $x_i^{\text{report}} \in \mathcal{X}$: worker *i*'s reported solution to the task

3

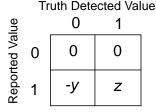
イロト イポト イヨト イヨト

• Workers

- \mathcal{N} : worker set, $|\mathcal{N}| = N$
- ► $x_i^{\text{estimate}} \in \mathcal{X}$: worker *i*'s estimated solution to the task
- ▶ $x_i^{\text{report}} \in \mathcal{X}$: worker *i*'s reported solution to the task
- $e_i \in \{0, 1\}$: worker *i*'s effort level

$$P(x_i^{ ext{estimate}} = x) = egin{cases} p_i \in (0.5,1], & ext{if } e_i = 1 ext{ with a cost } c_i \geq 0, \ 0.5, & ext{if } e_i = 0. \end{cases}$$

• $r_i \in \{1, -1, rd\}$: worker *i*'s reporting strategy


$$x_i^{\text{report}} = \begin{cases} x_i^{\text{estimate}}, & \text{if } r_i = 1, \\ -x_i^{\text{estimate}}, & \text{if } r_i = -1, \\ 1 \text{ or } -1 \text{ with equal prob.}, & \text{if } r_i = \text{rd.} \end{cases}$$

► Strategy space: $s_i \triangleq (e_i, r_i) \in \{(0, rd), (1, 1), (1, -1)\}$

- Truthful reward from truth detection
 - $t \triangleq (a, z, y)$: platform's decisions
 - ★ a: prob. a worker is chosen
 - ★ z: reward
 - ★ y: penalty

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Truthful reward from truth detection
 - $t \triangleq (a, z, y)$: platform's decisions
 - ★ a: prob. a worker is chosen
 - ★ z: reward
 - ★ y: penalty
 - After reporting solutions, a worker will be selected with prob. a
 - Chosen workers are asked: "have you exerted effort finishing the task?"

- $q \in [0.5, 1]$: truth detection accuracy
- If worker i exerts effort and truthfully answers the truth detection question, his expected truthful reward is

$$R_i = qz + (1-q)(-y).$$

Chao Huang (CUHK)

GlobalSIP 2019

Incentive Compatibility

We ensure that workers truthfully answer the truth detection question

Proposition (Incentive Compatibility)

For each worker *i*, truthfully answering the truth detection question leads to a higher expected truthful reward than lying if

 $q(y+z) \geq \max\{z,y\}.$

• IC will be constraint for platform's optimization problem

Worker Payoff Maximization

Workers

Worker i's payoff function is

$$u_i(\mathbf{t}, \mathbf{s}_i) = \underbrace{\partial R_i(\mathbf{t})}_{\text{truthful reward}} - \underbrace{e_i c_i}_{\text{cost}}.$$

* $\mathbf{t} = (z, y, a)$: platform's decisions

- Worker i's payoff maximization problem
 - ***** Given *t*, each worker *i* solves

$$\begin{array}{l} \max \ u_i(t,s_i) \\ \text{var.} \ s_i \in \{(0, \text{rd}), (1,1), (1,-1)\}. \end{array}$$

Platform Payoff Maximization

• Platform

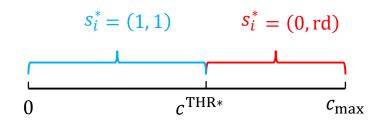
Platform's payoff function is

$$U_{\rho}(\mathbf{t}) = \beta \underbrace{P_{a}(\mathbf{t})}_{\text{aggregated accuracy}} - \underbrace{\mathbb{E}\left[R_{tr}^{T}\right](\mathbf{t})}_{\text{truthful rewards}} - \underbrace{\mathbb{E}\left[c_{\text{op}}^{T}\right](\mathbf{t})}_{\text{operational cost}}$$

- * $P_a(\mathbf{t})$: accuracy of the aggregated solutions: simple majority rule
- ★ $\beta > 0$: weight of the accuracy
- ★ $\mathbb{E}\left[R_{tr}^{T}\right]$: total expected truthful rewards
- ★ $\mathbb{E}\left[c_{op}^{T}\right]$: total expected operational cost, c_{op} per worker
- The platform's payoff maximization problem is

$$\begin{array}{ll} \max & U_{p}(t) \\ \text{s.t.} & q(y+z) \geq \max\{z,y\}, \ (\text{IC}) \\ \text{var.} & z \in [0,d], \ y \in [0,d], \ a \in [0,1] \end{array}$$

Problem Formulation


• Platform

• Optimizes $\mathbf{t} = (z, y, a)$ to maximize its payoff

Crowdsourced workers

- Each chooses $s_i = (e_i, r_i)$ to maximize his own payoff
- Heterogeneity
 - ★ cost of effort exertion c_i : cdf $F(\cdot)$ on support $[0, c_{max}]$
 - ★ solution accuracy p_i : mean $\bar{p} \in (0.5, 1]$

Stage II: Worker Strategy

•
$$c^{\text{THR}*} \triangleq a(qz + qy - y)$$

 $s_i^* = \begin{cases} (1,1), & \text{if } c_i \leq c^{\text{THR}*}, \\ (0, \text{rd}), & \text{if } c_i > c^{\text{THR}*}. \end{cases}$

Chao Huang (CUHK)

November, 2019 17 / 21

(日)

э

Stage I: Platform Payoff Maximization

- In general, the platform's problem is non-convex
- Under certain cost distributions, the problem becomes convex

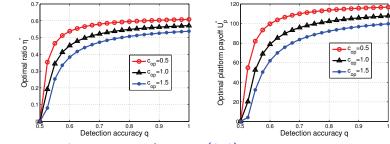
Stage I: Platform Payoff Maximization

- In general, the platform's problem is non-convex
- Under certain cost distributions, the problem becomes convex

Proposition (Uniform Distribution)

Suppose the workers' costs are drawn from uniform distribution, then the platform's problem is convex.

Proposition (Wrapped Exponential Distribution)

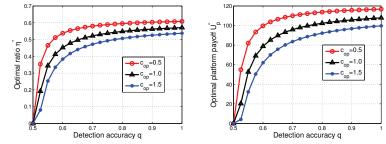

Suppose the workers' costs are drawn from wrapped exponential distribution with cdf $F(c) = \frac{1-e^{-\lambda c}}{1-e^{-\lambda c_{\max}}}$, where $0 < \lambda \leq 2$, then the platform's problem is convex.

• WED : there are mostly low-cost workers within the population

・ロト ・ 一下 ・ ト ・ ト ・ ト

Optimal Platform Payoff

• $\eta^* \triangleq \int_{c \in [0, c^{\mathsf{THR}_*}]} dF(c)$: the ratio of the workers that use (1, 1)



• Accuracy $q \uparrow \rightarrow$ more workers use (1,1)

Incentivize more workers with no larger total cost

Optimal Platform Payoff

• $\eta^* \triangleq \int_{c \in [0, c^{\mathsf{THR}_*}]} dF(c)$: the ratio of the workers that use (1, 1)

• Accuracy $q \uparrow \rightarrow$ more workers use (1,1)

- Incentivize more workers with no larger total cost
- Accuracy $q \uparrow \rightarrow$ higher platform payoff
 - Mechanism performs well even if q is not high
 - ★ E.g., for red curve, 60% accuracy ([I. Krajbich et al. 2009]) yields 85.4% of the maximum payoff under perfect accuracy (i.e., q = 1)
 - * By optimizing the reward scheme t = (z, y, a), mechanism with low accuracy can harvest most gain

Chao Huang (CUHK)

Conclusion

We proposed a truth detection mechanism to incentivize crowdsourced workers to complete tasks with high quality and truthfully report solutions

- As the truth detection accuracy improves, the platform should incentivize more workers
- Our mechanism performs well even when the detection accuracy is not very high

Network Communications and Economics Lab

http://ncel.ie.cuhk.edu.hk

GlobalSIP 2019

э

<ロト < 同ト < ヨト < ヨト