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Magnetic Resonance Imaging
• Exploits magnetic properties of tissues.
• Anatomy of the body - structural.

Figure: MRI scanner representation [1]

[1]’MRI a guided tour", Available online: https://nationalmaglab.org/education/magnet-academy
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Signal Acquisition (Single Coil)
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Noise Characteristics (Single Coil)

Magnitude Image M(p) =
√

(Ar (p)+Nr (p))2 +(Ai (p)+Ni (p))2

Rician Noise p(M) = M
σ2 e−

M2+A2
2σ2 I0

(
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σ2

)
With p being a random voxel location, A =

√
A2

r +A2
i and the standard deviation of real

and imaginary part being the same and equal to σ .
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Signal Acquisition (Multiple Coil)

• Used in parallel imaging to
increase the acquisition rate.

• Reconstruction process is
needed, for combining the
signals from each individual coil.

• Reconstruction algorithms do
not use linear mappings.

• The assumption of a single
value of σ to characterize the
whole data set is no longer
valid.
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Functional Magnetic Resonance Imaging

• Measures Blood Oxygen Level Dependent (BOLD) signal.
• Activation of the neurons - functional.
• BOLD fluctuation is modelled by the haemodynamic response

function (HRF).

-Determination of brain connectivity
-Localization of activated sources
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Blind Source Separation (BSS) for fMRI
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BSS for fMRI
Matrix-based approach

Tensor-based approach

[2]C. Chatzichristos et al,“Blind fMRI Source Unmixing via Higher-Order Tensor Decompositions", J. Neuroscience
Methods, Vol. 315, pp 17-47, Mar. 2019
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Tensor BSS for fMRI
The multi-way nature of the data is preserved in multi-linear (tensor) models,
which, in general:
• Produce unique (modulo scaling and permutation ambiguities)

representations under mild conditions.
• Can improve the ability of extracting spatiotemporal modes of interest.
• Facilitate neurophysiologically meaningful interpretations
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Least-squares (LS) optimization problem:

min
A,B,C

1
2‖T − JA,B,CK‖2F
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Other cost functions
• Euclidean distance implicitly assumes additive Gaussian noise

• Other cost functions might be better depending on data/noise
distribution

• Poisson process: Kullback–Leibler (KL) divergence
• Multiplicative Gamma noise: Itakura–Saito (IS) divergence
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β -divergences
• β -divergences interpolate between LS distance, KL divergence

and IS divergence [2]

• If β = 2, we obtain the Euclidean distance
• For β > 2, errors on larger values are penalized more heavily

than for the LS criterion; for β < 2, the converse is true

dβ (x ,y) =



xβ +(β −1)yβ −βxyβ−1

β (β −1) β ∈ R\{0,1}

x log x
y − x + y β = 1 (KL)

x
y − log x

y −1 β = 0 (IS)
[3]M. Vandecapelle et al,“Rank-one Tensor Approximation with β -divergence Cost Functions", EUSIPCO 2019
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Simulations

Figure: Sources used in the simulations [3]
[3] V. Calhoun et al, “Independent component analysis of fMRI data in the complex domain", Magn. Reson. Med, vol.
48, no. 1, pp. 180–192, Jul. 2002
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First simulation with same noise variance

0 0.5 1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1 95.2dB

47.6dB

22.4dB

11.2dB

βββ values

C
or

re
la

tio
n

Figure: First simulation with the 8 sources used in [3].
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Figure: Source 9 with high overlap is included in the initial sources
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Second simulation with different noise variance

Figure: Histograms of the observed values at one spatial point. a) Real
and imaginary noise variances are equal; b) the noise variance of the
imaginary part is five times that of the real part.
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Second simulation with different variance
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Figure: Second simulation with the 8 sources [3] and different noise
variance in the real and imaginary parts of the sources.
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Conclusions
• First time that the Gaussian noise assumption and its influence

on the fMRI BSS performance are tested in a tensorial
framework.

• β = 1 (KL divergence) performs best in cases where different
noise variances affect the real and imaginary data.

• β = 2.5 gives the best separation results in all other cases.
Future work
• Application in real data
• Use of regularizers that force independence or sparsity in the

spatial maps will be investigated
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