End-to-end Detection of Attacks to Automatic Speaker Recognizers with **Time-attentive Light Convolutional Neural Networks** MSAE João Monteiro^{1,2}, Jahangir Alam^{1,2}, and Institut national **1-Institut National de la Recherche Scientifique (INRS-EMT)** de la recherche Tiago H. Falk¹ 2-Centre de Recherche Informatique de Montréal (CRIM)

Introduction

- We introduce an end-to-end setting for detection of spoofing attacks to speaker recognizers
 - End-to-end: Speech features directly mapped into scores indicating how likely the input is to be an attack
 - Single step training
- Both 2-dimensional convolutional models and time convolutions are evaluated on the data introduced for the ASVSpoof 2019

General setting

- Encoding of input audio into local descriptors
 - LCNNs are employed:
 - Fast to train
 - MFM activation
 - Variation of Maxout
 - Unlikely to overfit
 - 1-dimensional convolutions over the time dimension for the case of cepstral coefficients
 - 2-dimensional frequency-time convolutional models for the case fo spectral representations
- Attentive strategy for pooling into a global descriptor
 - Model learns how to discard uninformative frames
 - Allows processing of inputs with varying length
- Projection of statistics of weighted local descriptors is finally given to a fully connected classification layer

joaomonteirof@gmail.com

 $W(\boldsymbol{\mu} \wedge \boldsymbol{\sigma})$ K-dimensional global descriptor

local descriptors

- duration is sampled every time an examp selected. Additionally, minibatches are cr a random duration prior to feeding in the
- Training is carried out with Stochastic Gra Descent using mini-batches of size 16 an cases of spectral and cepstral coefficients respectively. Polyak's momentum is also

		Evaluation data						
		 Data Introduced for the ASVSpoof challenge. Two 						
		sub-challenge	es:	-				
		\circ I original access attacks created with speech synthesis						
		\circ Developed	\sim Develop loss attacks created with speech synthesis					
		• Physical access: attacks created with simulated replay						
					# Recordings			
			# Speakers	Logical Access		Physical A	Physical Access	
			•	Bona fide	Spoof	Bona fide	Spoof	
	(17)]	Training	20	2580	22800	5400	48600	
$\wedge \sigma$	$r(w_i V_i)$	Development	20	2548	22296	5400	24300	
		 Logical Access 						
		8		Featur	e-Model	EER(%)	t-DCF	
			1 1	LFCC	C-GMM	2.71	0.0663	
		ASV spoot be	ASV spoof benchmarks		CQCC-GMM		0.0123	
			h 1'	CQCC	C-GMM	0.39	0.0110	
		Internal	Internal baselines		i-vector-PLDA		0.0210	
٦		Pror	posed	CQCC-	LCNN29	1.07	0.0321	
i=0			Proposed		LFCC-LCNN29		0.0048	
=1		• Physical Acces	55					
	N .			Featur	re-Model	EER(%)	t-DCF	
=3	- attack	ASVspoof be	ASVspoof benchmarks Internal baselines		LFCC-GMM		0.2554	
4					CQCC-GMM		0.1953	
5		Internal			CQCC-GMM		0.1842	
					i-vector-PLDA		0.2310	
		D	Proposed		CQCC-LCNN29		0.0752	
		Prop			Spec-LCNN9 ProdSpac I CNN0		0.0488	
				Trouspo		0.07	0.0232	
d								
i be	nto			Conclusio	ons			
el						_		
		 We introduce 	ed variations	s of the LCN	NN archite	ecture aug	mented	
		with a self-at	with a self-attention mechanism so as to perform end-to-end					
nt		detection of s	detection of spoofing attacks					
for the		0 Introduced	 Introduced approach outperforms classical settings involving 					
OVF	ed					····. ~	1.	
- y C		 In future worl 	k we intend	to investig	ate the al	oility of end	d-to-end	
		models in ger	neralizing a	cross attacl	< strategi	es		

http://musaelab.ca/

