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Introduction

Proposed a person verification system based on the footfall
signature using GMM-UBM.

The footfall generated ground vibration is used a biometric
modality.

The proposed system is evaluated on an indigenous dataset
containing 7750 footfall events of 20 subjects.

Robustness of the system is evaluated by varying the number
of registered and non registered users.

Performance parameters: Half Total Error Rate (HTER)

Compared with the existing state of the art techniques: SVM1

and CNN2.
1S. Pan, A. Bonde, J. Jing, L. Zhang, P. Zhang, and H. Y. Noh, “Boes: building occupancy estimation system

using sparse ambient vibration monitoring,” in SPIE Smart Structures and Materials+ Nondestructive Evaluation
and Health Monitoring, vol. 9061, Apr. 2014

2O. C. Reyes, R. Vera-Rodriguez, P. Scully, and K. B. Ozanyan, “Analysis of spatio-temporal representations for
robust footstep recognition with deep residual neural networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 2, pp. 285–296, Feb. 2019.
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Drawbacks with the existing biometric system

Require active cooperation of an individual for verification.

Camera based system: An individual has to stand in front of a
camera under proper lighting condition.
Fingerprint based system: Individuals need to place their finger
on a scanner.
Speech based system: Individuals need to speak in a low noise
environment.

Vulnerable of privacy invasion and data leakage: A detailed
database (facial image/fingerprints/voice) of the registered
users are maintained.

Leakage can lead to identity theft as these data are related to
the users’ individuality.

Biometrics systems can also be subjected to spoofing or
presentation attack.
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Ground vibration generated by footfall
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Figure 1: Signal generated from the footfalls
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System Architecture
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Figure 2: Footstep based person verification system using GMM-UBM3.

3Reynolds, Douglas A., Thomas F. Quatieri, and Robert B. Dunn. ”Speaker verification using adapted Gaussian
mixture models.” Digital signal processing 10.1-3 (2000): 19-41.
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Signal Recording and Preprocessing

UREDT 4

Windowing technique is used to prevent spectral leakage.
Spectral leakages introduce high frequency harmonics in the frequency domain of the
seismic signal and deteriorates the performance of the system .
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Figure 3: Illustration of the event extraction process.

4S. Anchal, B. Mukhopadhyay, and S. Kar, “UREDT: Unsupervised learning based real-time footfall event
detection technique in seismic signal,” IEEE Sensors Lett., vol. 2, no. 1, pp. 1-4, Mar. 2018
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Features of the footfall event
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Experimentation Methodology
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Figure 4: Partitioning of the dataset.

Class specific threshold are utilized

Validation set is used to determine the threshold using
EER(Equal Error Rate) criteria

Half Total Error Rate (HTER) is used as evaluation matrix
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Evaluation Matrix: Half Total Error Rate (HTER)

False Acceptance Rate (FAR): Imposters detected as
Registered users

False Rejection Rate (FRR): Registered users are detected as
Imposters

Half Total Error Rate (HTER):

HTER =
FAR + FRR

2
(1)
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Optimal number of Gaussian mixtures
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Figure 5: HTER of the test set corresponding to different numbers of Gaussian
mixtures.
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Tuning Parameters of the techniques used

GMM-UBM: No. of Gaussian Mixtures = 4, Adaptation
Coefficients = 5

SVM: C = 100, γ = 0.001

CNN: Input: 134x1. 4 CONV layers (64 filters, Kernel size 3,
max-pooling), 1 FC layer (100), Softmax output layer.
Optimizer: ADAM.
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Experimentation Results

Table 1: Performance of GMM-UBM , SVM, and CNN in person verification.

(a) Performance of the techniques as rreg is varied. (rnreg = 8)

#Registered
User

GMM-UBM SVM-RBF SVM-Lin CNN
FAR FRR HTER FAR FRR HTER FAR FRR HTER FAR FRR HTER

2 4.45 8.56 6.51 9.46 13.24 11.35 14.33 10.62 12.47 35.80 1.36 18.58

4 3.95 8.62 6.29 2.07 20.27 11.17 3.48 17.95 10.71 7.58 6.15 6.86

6 4.19 9.99 7.09 1.33 26.90 14.12 2.86 24.49 13.67 2.71 13.05 7.88

8 5.04 9.92 7.48 0.65 28.20 14.42 1.52 27.09 14.31 1.48 14.46 7.97

(b) Performance of the techniques as rnreg is varied. (rreg = 5)

#Non Registered
User

GMM-UBM SVM-RBF SVM-Lin CNN
FAR FRR HTER FAR FRR HTER FAR FRR HTER FAR FRR HTER

2 4.19 10.00 7.09 0.24 28.31 14.28 0.48 26.60 13.540 1.62 12.60 7.11

8 4.50 9.93 7.21 0.66 28.68 14.67 1.56 26.88 14.220 4.20 12.60 8.40

12 / 20



GMM-UBM based Person Verification using footfall signatures for Smart Home Applications

Experimentation Results: HTER for individual classes
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Figure 6: Performance of the GMM-UBM, CNN and SVM-RBF techniques when
rreg = 6 and rnreg = 5.
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Thank You!

Any Questions?
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