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What is a quantum radar?

I Any radar that exploits phenomena from quantum physics
to improve detection performance

I But quantum physics includes everything in classical physics!

I We look at a distinctively quantum phenomenon called
entanglement
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What entanglement is not

Some people explain entanglement like this:

“If one entangled particle interacts with something,
its twin would react in the same way,

even if it is far away.”

NO.
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What entanglement is

All you need to understand for quantum radar:

entanglement = strong correlation

I Correlation =⇒ probability theory. Does entanglement
involve probability, statistics, random variables?

YES!
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Quantum radar: the basic idea

Transmitter Receiver

Target

Signal 2

Signal
1

1. Produce a pair of entangled
microwave beams.

2. Transmit one of the beams. Keep
the other.

3. Receive and measure the signal.

4. Correlate the received and retained
signals. Declare a detection if the
correlation exceeds a certain
threshold.
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Quantum radar: the basic idea

Transmitter Receiver

Target

Signal 2

Signal
1

I Entangled signals are highly
correlated at transmitter

I High correlation at receiver =⇒
target present

I Low correlation at receiver =⇒
target absent

5 / 20



But you don’t need quantum for this, right?

Transmitter Receiver

Target

Signal 2

Signal
1

I Isn’t this just matched filtering?

I Can’t we generate 100% correlated
signals?

I Why bother with all this quantum
stuff?
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The bad news: quantum noise

I Conventional matched filtering assumes a perfect copy of
the signal is available

I Quantum mechanics says a perfect copy is impossible

I There will always be noise in I and Q voltage measurements,
even in an theoretically ideal system

I Quantum noise exists even at absolute zero and in a perfect
vacuum
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Can’t you just split the signal?

Signal 1

Signal 2

Input

Quantum

vacuum noise

I Vacuum noise will creep into the beamsplitter, even at
absolute zero and in a perfect vacuum
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Quantum noise
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I Classically ideal signal: I (t) = A cos(ωt)

I Quantum ideal signal: I (t) ∼ A cos(ωt) +N (0, σ2)

I Gaussian noise with power depending only on ω
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Quantum noise and entanglement

I 100% correlation is impossible between signals with
uncorrelated quantum noise
I No such thing as perfect matched filtering

I Quantum noise cannot be eliminated, but can be correlated
between two signals
I Better “matched filtering”

ρI1,I2
0 Max classical

correlation

1

Achievable classically Entangled
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Quantum two-mode squeezing radar

Transmitter Receiver

Target

Signal 2

(digitized)

Signal
1

1. Produce a pair of entangled
microwave beams.

2. Transmit one of the beams.
Immediately record a time series of
I/Q voltages for the other beam.

3. Receive and record I/Q voltages.

4. Perform matched filtering as usual.

Note: a prototype QTMS radar
has been built!
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The QTMS radar covariance matrix


σ21 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ21 ρσ1σ2 sinφ −ρσ1σ2 cosφ

ρσ1σ2 cosφ ρσ1σ2 sinφ σ22 0
ρσ1σ2 sinφ −ρσ1σ2 cosφ 0 σ22


I I1, Q1, I2, Q2 are Gaussian random variables characterized

by this covariance matrix

I σ21, σ22 are signal powers for the received and recorded signals;
φ is the phase between them

I ρ characterizes the correlation between the two signals
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ρ as a detector function

Transmitter Receiver

Target

Signal 2

Signal
1

I ρ > 0 at receiver =⇒ target
present

I ρ = 0 at receiver =⇒ target
absent

I Note: entanglement improves ρ at
transmitter

I Only need to distinguish between
ρ > 0 and ρ = 0 at receiver
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Estimation of ρ


σ21 0 ρσ1σ2 cosφ ρσ1σ2 sinφ
0 σ21 ρσ1σ2 sinφ −ρσ1σ2 cosφ

ρσ1σ2 cosφ ρσ1σ2 sinφ σ22 0
ρσ1σ2 sinφ −ρσ1σ2 cosφ 0 σ22


I Can estimate the covariance matrix from measurement data

using the sample covariance matrix

Ŝ =
1

N

N∑
n=1

xnx
T
n

I Problem: no guarantee that Ŝ is of the above form
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Estimation of ρ

I One way to estimate ρ from the sample covariance matrix:

min
σ1,σ2,ρ,φ

∥∥∥RQTMS(σ1, σ2, ρ, φ)− Ŝ
∥∥∥
F

I RQTMS(σ1, σ2, ρ, φ) is the theoretical covariance matrix

I This gives us an estimate ρ̂ of the underlying, “true”
correlation ρ
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Probability distribution of ρ̂

I We have found through simulations that the distribution of ρ̂
can be approximated by the Rice distribution

f (x |α, β) =
x

β2
exp

(
−x

2 + α2

2β2

)
I0

(
xα

β2

)
I In terms of the underlying, “true” ρ and the number of

integrated samples N :

α = ρ

β =
1− ρ2√

2N
.
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Simulated data
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I Orange bars: histograms of ρ̂ obtained from simulations of
QTMS radar measurements

I Solid curves: Rice distribution approximation
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Explicit ROC curve formula

I Based on our Rice distribution approximation, we can obtain
an explicit ROC curve formula for the detection performance
of a QTMS radar:

pD(pFA|ρ,N) = Q1

(
ρ
√

2N

1− ρ2
,

√
−2 ln pFA
1− ρ2

)
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ROC curve plots
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Conclusion

I Quantum two-mode squeezing (QTMS) radars involve
correlating two signals

I Can extract a single correlation coefficient ρ that depends
on whether target is present/absent

I The Rice distribution is a good approximation to the
distribution of ρ̂

I This is a big step toward performance prediction for QTMS
radars: we need only focus on determining ρ
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