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What is a quantum radar?

» Any radar that exploits phenomena from quantum physics
to improve detection performance

» But quantum physics includes everything in classical physics!

» We look at a distinctively quantum phenomenon called
entanglement
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What entanglement is not

Some people explain entanglement like this:

“If one entangled particle interacts with something,
its twin would react in the same way,
even if it is far away.”
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What entanglement is not

Some people explain entanglement like this:

“If one entangled particle interacts with something,
its twin would react in the same way,
even if it is far away.”

NO.
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What entanglement is

All you need to understand for quantum radar:

entanglement = strong correlation
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What entanglement is

All you need to understand for quantum radar:

entanglement = strong correlation

» Correlation = probability theory. Does entanglement
involve probability, statistics, random variables?
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What entanglement is

All you need to understand for quantum radar:

entanglement = strong correlation

» Correlation = probability theory. Does entanglement
involve probability, statistics, random variables?

YES!

DRDC IRDDC

4/20



Quantum radar: the basic idea

Signal 2

N

Transmitter

Receiver
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1. Produce a pair of entangled
microwave beames.

2. Transmit one of the beams. Keep
the other.

3. Receive and measure the signal.

4. Correlate the received and retained
signals. Declare a detection if the
correlation exceeds a certain
threshold.
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Quantum radar: the basic idea

» Entangled signals are highly
correlated at transmitter

» High correlation at receiver —>
target present

Signal 2 ) )
/\ » Low correlation at receiver —>
target absent

Transmitter Receiver

.......
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But you don't need quantum for this, right?

» Isn't this just matched filtering?

» Can't we generate 100% correlated
signals?

» Why bother with all this quantum

Signal 2

P stuff?

Transmitter Receiver
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The bad news: quantum noise

» Conventional matched filtering assumes a perfect copy of
the signal is available

» Quantum mechanics says a perfect copy is impossible

» There will always be noise in / and @ voltage measurements,
even in an theoretically ideal system

» Quantum noise exists even at absolute zero and in a perfect
vacuum
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Can't you just split the signal?
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Can't you just split the signal?

/\Signa| 2

Input Signal 1

Quantum

vacuum noise

» Vacuum noise will creep into the beamsplitter, even at
absolute zero and in a perfect vacuum
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Quantum noise

» Classically ideal signal: /(t) = Acos(wt)

» Quantum ideal signal: /(t) ~ Acos(wt) + N (0, o?)
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Quantum noise

» Classically ideal signal: /(t) = Acos(wt)

» Quantum ideal signal: /(t) ~ Acos(wt) + N (0, o?)

» Gaussian noise with power depending only on w
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Quantum noise and entanglement

» 100% correlation is impossible between signals with
uncorrelated quantum noise

» No such thing as perfect matched filtering
» Quantum noise cannot be eliminated, but can be correlated

between two signals
» Better “matched filtering”

Achievable classically Entangled

: ! Ply,h
0 Max classical 1
correlation
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Quantum two-mode squeezing radar

Signal 2
(digitized)

N

Transmitter

Receiver
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1. Produce a pair of entangled
microwave beams.

2. Transmit one of the beams.

Immediately record a time series of
|/Q voltages for the other beam.

3. Receive and record 1/Q voltages.
4. Perform matched filtering as usual.

Note: a prototype QTMS radar
has been built!
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The QTMS radar covariance matrix

o2 0 pO102COS P o102 Sin ¢

0 Jf pO102SINQ  —pPo102 COS @
PO102COS ¢ pPO102SIN O o3 0
pO102SIN G  —pPo102 COS @ 0 0%

» /1, Q1, b, @ are Gaussian random variables characterized
by this covariance matrix

» o2, 05 are signal powers for the received and recorded signals;

¢ is the phase between them
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The QTMS radar covariance matrix

o2 0 pO102COS ¢ po1ooSin ¢

0 Jf pO102SINQ  —po102 COS @
pPO102COS D poiorsin @ o3 0
pO102SINQ  —po102 COS @ 0 0%

» /1, Q1, b, @ are Gaussian random variables characterized
by this covariance matrix

» o2, 05 are signal powers for the received and recorded signals;
¢ is the phase between them

» p characterizes the correlation between the two signals
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p as a detector function

Signal 2

N

Transmitter

Receiver
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» p > 0 at receiver —> target
present

» p =0 at receiver — target
absent

» Note: entanglement improves p at
transmitter

» Only need to distinguish between
p > 0and p =0 at receiver
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Estimation of p

o2 0 pO102COS G poiooSin ¢

0 Jf pO102SINQ  —po10, COS @
pPO102COS D po1ooSin ¢ o3 0
pO102SINQ  —po102 COS @ 0 0%

» Can estimate the covariance matrix from measurement data
using the sample covariance matrix

§= 3

» Problem: no guarantee that S is of the above form
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Estimation of p

» One way to estimate p from the sample covariance matrix:

min HRQTMS(O-la 02, P §) — gHF

017027P7¢

» Rqrms(o1, 02, p, @) is the theoretical covariance matrix

» This gives us an estimate p of the underlying, “true”
correlation p
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Probability distribution of p

» We have found through simulations that the distribution of p
can be approximated by the Rice distribution

X x> + o? X
f(x|la, B) = @eXp <_ 2;204 ) Iy (5_(;>

» In terms of the underlying, “true” p and the number of
integrated samples N:

a=p
1 — 2
e
V2N
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Simulated data

p=0.01,N = 10,000 p=0.5,N=10,000
80

60

0.01 0.02 o 0.03 ().(‘)4 ‘ 0.49 0.50 0.51 0_;2
» Orange bars: histograms of p obtained from simulations of
QTMS radar measurements

» Solid curves: Rice distribution approximation
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Simulated data

p=0.01,N = 50,000 p=0.5,N=50,000
120
100 |
8o 100

60

40 50+

0.01 0.02 0.03 0.04 0.49 0.50 0.51

» Orange bars: histograms of j obtained from simulations of
QTMS radar measurements

» Solid curves: Rice distribution approximation
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Simulated data

p=0.01,N = 100,000 p=0.5,N = 100,000
250
150 200
150
100
100
S0
50
ok . ' ' : ol \ AT ; ;
0.01 0.02 0.03 0.04 0.49 0.50 0.51 0.52

» Orange bars: histograms of p obtained from simulations of
QTMS radar measurements

» Solid curves: Rice distribution approximation
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Explicit ROC curve formula

» Based on our Rice distribution approximation, we can obtain

an explicit ROC curve formula for the detection performance
of a QTMS radar:

p\/2N \ —21In PFA
po(pralp. N) = Qu| T— e
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ROC curve plots

0.01

0.0+

0.005

10-15 10-12 109 1076 0.001 1

Prob. of False Alarm

» p = 0.005, 0.01, 0.015, 0.02,

0.025, 0.03
» N = 50,000
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Prob. of Detection

0.0 =

10-15 10-12 1079 1076 0.001

Prob. of False Alarm

» p =001

» N = 25k, 50k, 75k, 100k,

125k, 150k, 175k, 200k
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Conclusion

» Quantum two-mode squeezing (QTMS) radars involve
correlating two signals

» Can extract a single correlation coefficient p that depends
on whether target is present/absent

» The Rice distribution is a good approximation to the
distribution of p

» This is a big step toward performance prediction for QTMS
radars: we need only focus on determining p
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