Ambient OFDM Pilot-Aided Delay-Shift Keying and Its Efficient Detection for Ultra Low-Power Communications

<u>Ryuhei Takahashi</u> and Koji Ishibashi Advanced Wireless & Communication Research Center (AWCC), The University of Electro-Communications

Email: <u>r.takahashi@awcc.uec.ac.jp</u>, koji@ieee.org

Background

Internet-of-things (IoT)

- · A huge number of wireless devices will be installed.
- · <u>High cost to replace their batteries is inevitable.</u>
- Requires an ultra-low-power communications method.

Conventional Studies

Ambient backscatter communication (AmBC) system [1]

BTx has been implemented based on on-off keying.

•

AWCC

- Transmits information by either absorbing or reflecting ambient radio-frequency signals.
- <u>Can operate with ultra-low-power, e.g.</u>) 0.25 μW

[1] V. Liu, et al., "Ambient Backscatter: Wireless Communication Out of Thin Air," ACM SIGCOMM Comput. Commun. Review, vol. 43, no. 4, pp. 39–50, Oct. 2013.

Conventional Studies

Ambient backscatter communication (AmBC) system [1]

- BTx has been implemented based on on-off keying.
- Transmits information by either absorbing or reflecting ambient radio-frequency signals.
- <u>Can operate with ultra-low-power, e.g.</u>) 0.25 µW
- BRx demodulated information by using LPF⁽¹⁾ and ED⁽²⁾.
 - BTx's symbol rate must be even lower than ATx.
 - Bandwidth efficiency is limited.

٠

•

AWCC

[1] V. Liu, *et al.*, "Ambient Backscatter: Wireless Communication Out of Thin Air," *ACM SIGCOMM Comput. Commun. Review*, vol. 43, no. 4, pp. 39–50, Oct. 2013.

Conventional Studies

Cooperative AmBC system [2]

٠

•

•

AWCC

Proposed <u>a cooperative receiver (CRx)</u> exploiting ambient OFDM⁽³⁾ pilot symbols.

- 1. Estimates the channel coefficients between ATx and CRx.
- 2. Detects information from ATx and BTx via
 - a joint maximum likelihood (ML) detector.

The Joint ML detector allows BTx to transmit information with *M*-ary modulation.

- Eliminates the bandwidth constraint.
- CRx must detect information from ATx.
- Causes high-computational complexity.

OFDM⁽³⁾: orthogonal frequency-division multiplexing

[2] G. Yang, Q. Zhang, and Y. Liang, "Cooperative Ambient Backscatter Communications for Green Internet-of-Things," *IEEE Internet of Things J.*, vol. 5, no. 2, pp. 1116–1130, Apr. 2018.

<u>Aim</u>

✓ To establish an AmBC system, where BTx and BRx can operate with low-power consumption and low-computational complexity.

Contribution

- Propose a novel AmBC system exploiting that any user can perfectly know an ambient OFDM frame structure.
 - Y Propose delay-shift-keying (DSK) and its ML detector.
 - Different propagation delays lead to a different phase rotation of subcarriers at OFDM demodulation.
 - ✓ Achieve lower symbol error rate (SER) than system of [1].
 - ✓ <u>Do NOT need demodulation of ATx's symbols</u>, unlike [2].

[1] V. Liu, *et al.*, "Ambient Backscatter: Wireless Communication Out of Thin Air," *ACM SIGCOMM Comput. Commun. Review*, vol. 43, no. 4, pp. 39–50, Oct. 2013.

[2] G. Yang, Q. Zhang, and Y. Liang, "Cooperative Ambient Backscatter Communications for Green Internet-of-Things," *IEEE Internet of Things J.*, vol. 5, no. 2, pp. 1116–1130, Apr. 2018.

System Model

· d_n : delay of time sample (for *n*-th delay circuit)

System Model

Example of ATx's frame structure based on IEEE 802.11

: Pilot signal in preamble : Pilot signal in payload

AWCC

: Information

System Model

AWCC

Received signal of BRx in phase 1

$$\tilde{\mathbf{y}}_1 = \mathbf{W}\mathbf{H}_1\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \mathbf{v}_{\mathrm{P1}} \in \mathbb{C}^{N \times 1}$$

- \cdot N: the number of subcarriers
- · $\mathbf{W} \in \mathbb{C}^{N \times N}$: discrete Fourier transform matrix
- . $\mathbf{H}_1 \in \mathbb{C}^{N \times N}$: channel matrix between ATx and BRx
- . $\tilde{\mathbf{s}} \in \{+1, -1\}^{N \times 1}$: pilot sequence

AWCC

· \mathbf{v}_{Pn} : additive while Gaussian noise (AWGN) vector in phase n

Received signal of BRx in phase 2

 $\tilde{\mathbf{y}}_2 = \mathbf{W}\mathbf{H}_1\mathbf{W}^{\mathsf{H}}\tilde{\mathbf{s}} + \alpha\mathbf{W}\mathbf{H}_3\mathbf{T}^{d_0}\mathbf{H}_2\mathbf{W}^{\mathsf{H}}\tilde{\mathbf{s}} + \mathbf{v}_{\mathsf{P}2}$

- . $\mathbf{H}_2 \in \mathbb{C}^{N \times N}$: channel matrix between ATx and BTx
- . $\mathbf{H}_3 \in \mathbb{C}^{N \times N}$: channel matrix between BTx and BRx
- $\alpha \in \mathbb{C}$: reflection coefficient

$$\mathbf{T} \triangleq \begin{bmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{bmatrix} \in \{0, 1\}^{N \times N}$$

Received signal of BRx in phase 3

$$\tilde{\mathbf{y}}_{3,k} = \mathbf{W}\mathbf{H}_1\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \alpha\mathbf{W}\mathbf{H}_3\mathbf{T}^{d_i}\mathbf{H}_2\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \tilde{\mathbf{v}}_k$$

- $\cdot k$: index of OFDM pilot symbol
- . $\tilde{\mathbf{v}}_k$: AWGN vector

Received signal of BRx in phase 3

$$\tilde{\mathbf{y}}_{3,k} = \mathbf{W}\mathbf{H}_1\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \alpha\mathbf{W}\mathbf{H}_3\mathbf{T}^{d_i}\mathbf{H}_2\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \tilde{\mathbf{v}}_k$$

- $\cdot k$: index of OFDM pilot symbol
- . $\tilde{\mathbf{v}}_k$: AWGN vector

<u>ML detector</u>

AWCC

$$\widehat{d}_{m} = \underset{d_{m} \in \{d_{0}, \dots, d_{M-1}\}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left\| \widetilde{\mathbf{y}}_{3,k} - \mathbf{W}\mathbf{H}_{1}\mathbf{W}^{H}\widetilde{\mathbf{s}} - \alpha\mathbf{W}\mathbf{H}_{3}\mathbf{T}^{d_{m}}\mathbf{H}_{2}\mathbf{W}^{H}\widetilde{\mathbf{s}} \right\|_{2}^{2}$$

Received signal of BRx in phase 3

$$\tilde{\mathbf{y}}_{3,k} = \mathbf{W}\mathbf{H}_1\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \alpha\mathbf{W}\mathbf{H}_3\mathbf{T}^{d_i}\mathbf{H}_2\mathbf{W}^{\mathrm{H}}\tilde{\mathbf{s}} + \tilde{\mathbf{v}}_k$$

- $\cdot k$: index of OFDM pilot symbol
- . $\tilde{\mathbf{v}}_k$: AWGN vector

ML detector

$$\widehat{d}_{m} = \underset{d_{m} \in \{d_{0}, \dots, d_{M-1}\}}{\operatorname{arg\,min}} \sum_{k=1}^{K} \left\| \widetilde{\mathbf{y}}_{3,k} - \mathbf{W}\mathbf{H}_{1}\mathbf{W}^{\mathrm{H}}\widetilde{\mathbf{s}} - \alpha\mathbf{W}\mathbf{H}_{3}\mathbf{T}^{d_{m}}\mathbf{H}_{2}\mathbf{W}^{\mathrm{H}}\widetilde{\mathbf{s}} \right\|_{2}^{2}$$

Assuming the perfect channel estimation.

2019/11/14 IEEE GlobalSIP, Signal Processing for Communication

Performance Analysis

Different Looks of DSK

· Time domain

- · Different propagation delays.
- · Frequency domain
 - · Different phase rotations over subcarriers.
- To minimize SER, the optimal delay alphabet should be determined by deriving pairwise error probability of DSK.

Performance Analysis

Different Looks of DSK

Time domain

- · Different propagation delays.
- Frequency domain
 - · Different phase rotations over subcarriers.
- To minimize SER, the optimal delay alphabet should be determined by deriving pairwise error probability of DSK.

Pairwise error probability over AWGN channel

$$Q\left(\sqrt{\frac{K \cdot \text{SNR}}{2}} \mathbf{W}(\mathbf{T}^{d_i} - \mathbf{T}^{d_j})\mathbf{W}^{\text{H}}\tilde{\mathbf{s}}\right) \qquad \qquad \cdot \quad Q(\cdot): \text{ Q-function} \\ \cdot \quad i, j \in \{0, \dots, M-1\}, i \neq j$$

Pairwise error probability over fading channel (upper bound)

$$\left(\prod_{\ell=1}^{L_2} \frac{1}{\lambda_{\ell}}\right) \left(\frac{K}{4L_2} \text{SNR}\right)^{-L_2}$$

λ_ℓ: eigenvalue of Gram
matrix of distance between
two alphabets [3]

[3] D. Tse and P. Viswanath, Fundamentals of Wireless Communication, 1st ed. sity Press, 2005.

•

Definition of SNR and Parameters

Received signal to noise power ratio (SNR)

$$SNR = \frac{\mathbb{E}_{\mathbf{H}_{2},\mathbf{H}_{3}} \left[\left\| \left(\alpha \mathbf{W} \mathbf{H}_{3} \mathbf{T}^{d_{m}} \mathbf{H}_{2} \mathbf{W}^{\mathrm{H}} \tilde{\mathbf{s}} \right) \right\|_{2}^{2} \right]}{\mathbb{E}_{k} \left[\left\| \tilde{\mathbf{v}}_{k} \right\|_{2}^{2} \right]}$$

<u>Assumption</u>

- . Channel matrix \mathbf{H}_3 is set the identity matrix.
- Power delay profile is set an exponential function [4].

Simulation parameters

The number of subcarriers	N	64
The number of multi paths between ATx and BTx	L_2	1
The number of pilot OFDM symbols for AmBC	K	1
The number of delay circuits	М	2
Delay alphabet	$\{d_0, d_1\}$	{0, 2}

[4] A. F. Molisch, Wireless Communications Second Edition, 2nd ed. Wiley, 2011.

2019/11/14 IEEE GlobalSIP, Signal Processing for Communication

SERs for AWGN and fading channels

2019/11/14 IEEE GlobalSIP, Signal Processing for Communication

AWCC

SERs over fading channels with different L₂

SERs for different K over fading channels

SERs for different *M* over fading channels

AWCC

Summary

<u>Aim</u>

✓ To establish an AmBC system, where BTx and BRx can operate with low-power consumption and low-computational complexity.

Contribution

- Propose a novel AmBC system exploiting that any user can perfectly know an ambient OFDM frame structure.
 - Y Propose delay-shift-keying (DSK) and its ML detector.
 - Different propagation delays lead to a different phase rotation of subcarriers at OFDM demodulation.
 - ✓ Achieve lower symbol error rate (SER) than system of [1].
 - ✓ <u>Do NOT need demodulation of ATx's symbols</u>, unlike [2].

[1] V. Liu, *et al.*, "Ambient Backscatter: Wireless Communication Out of Thin Air," *ACM SIGCOMM Comput. Commun. Review*, vol. 43, no. 4, pp. 39–50, Oct. 2013.

[2] G. Yang, Q. Zhang, and Y. Liang, "Cooperative Ambient Backscatter Communications for Green Internet-of-Things," *IEEE Internet of Things J.*, vol. 5, no. 2, pp. 1116–1130, Apr. 2018.

