

MULTI-VIEW DISTRIBUTED SOURCE CODING OF BINARY FEATURES FOR VISUAL SENSOR NETWORKS

Nuno Monteiro, Catarina Brites, Fernando Pereira, João Ascenso Instituto de Telecomunicações — Instituto Superior Técnico

I. Context

- \Rightarrow Visual Sensor Networks (VSNs):
 - \rightarrow Sensing Nodes: Visual data is acquired and features are extracted.
 - \rightarrow Sink Node: Features are gathered and analyzed.
 - \rightarrow Strict constraints in computational power, energy and bandwidth at the sensing nodes.

2. Objectives and Solution

- ⇒ Multi-view Distributed Feature Codec (MDFC) Objectives:
 - \rightarrow Exploit the correlation between features extracted from overlapped views of the same scene.
 - \rightarrow Propose coding techniques with minimal routing overhead, that work under severe bandwidth
 - restrictions and that are parsimonious in terms of computational resources.
- \Rightarrow **MDFC Solution:**
- \rightarrow Improve the coding efficiency of binary features by exploiting multiple Side Information (SI) hypotheses in the Iterative Slepian-Wolf decoding process (Turbo and LDPC): I. Multiple Inter-view SI creation step: Several SI hypotheses are constructed by exploiting spatial correlation between different views.

3. Proposed Architecture

⇒ Based on the DISCOVER codec used for (pixelbased) mono-view distributed video coding.

2. Intra-view SI creation method: Works in parallel with the Inter-view mode to decode independent features that are not highly correlated with the other views of the same scene.

\Rightarrow Novel contribution:

 \rightarrow Understand how Inter-view correlation can be exploited to obtain SI with higher accuracy.

4. Inter-View Side Information (SI) Creation

 \Rightarrow To exploit the spatial redundancy between views it is necessary to decide which of the previously decoded descriptors is correlated with the descriptor being decoded.

4.1. Centroid Based Strategy (CBS)

- \rightarrow Descriptors are assigned to a cluster.
- \rightarrow The same features, extracted from different views are expected to be represented by similar descriptors (same cluster ID).

			V
Centroid	Nearest Neighbor	Centroid	Nearest Neighbor
Database	Selection	Database	Selection

4.2. Geometry Based Strategy (GBS)

- \Rightarrow Exploits the geometric position of the extracted descriptors:
 - I. Centroid Matching: Centroid ID is used to identify a set of similar descriptors for each of the new descriptors being decoded.
 - 2. Affine Model Estimation: Search for an affine model between the view being decoded and each reference view.

5. Correlation Noise Model

\Rightarrow **Motivation**:

- \rightarrow A reliable model, that characterizes the correlation noise between the original descriptor and the SI descriptors, is needed.
- \rightarrow Descriptors are binary memoryless sources where symbols ('0' and '1') have the same probability of occurrence.
- \rightarrow SI descriptors corresponds to the set of already decoded descriptors that are highly correlated with the source.

\Rightarrow **Binary Symmetric Channel** (BSC):

 \rightarrow If a centroid's descriptor symbol is set to '0': The probability of the encoded symbol being '0' (P_{-}) is equal to the number of times, that same symbol, is set to '0' (N) divided by the number of descriptors (M) in the set of SI de-

scriptors set. Equivalent for 'I' (P_+) .

 $P_{-} = p(B_{n} = 0 | Y_{n}^{0}, \dots, Y_{n}^{M}) = \frac{N}{M}$ $P_{+} = p(B_{n} = 1 | Y_{n}^{0}, \dots, Y_{n}^{M}) = 1 - p(B_{n} = 0 | Y_{n}^{0}, \dots, Y_{n}^{M})$

7. Conclusions and Future Work

 \Rightarrow Significant **bitrate savings** were obtained by exploiting Inter-view redundancy at decoder side.

 \Rightarrow Accuracy of the object recognition task improves by using more cameras (MAP goes from 30% to 70%).

 \Rightarrow A future improvement can be the design of a selection coding scheme, which prevents redundant features from being transmitted.

outperforms 'PFC' when using I reference view. 'MDFC—Turbo' needs more

 \Rightarrow **Clusters**: 4096 centroids of 512 bits each. ⇒ Independent Encoding bitrates: The bitrate compression acheived with 'PFC' slightly outperforms 'MDFC—LDPC'. Both outperform 'MDFC— Turbo' by 7 percentual points.

views.

Ref. Views

MDFC - Turbo

6.2. Experimental Results:

PFC and MDFC average Bitrate Reduction [%]

MDFC - LDPC 23.04 28.05 32.45 33.23 37.36

Intra

23.97

16.41 22.47

CBS

27.57 28.44 33.23

⇒ Unsupervised Learning: 12456 images from Paris, Stanford landmarks and Oxford datasets.

6. Performance Evaluation

⇒ **Keypoint Detector**: SURF

6.1. Test Conditions:

- \Rightarrow Feature Extractor: BRISK
- **Dataset**: Berkley Multiview Wireless \Rightarrow **Reference** (BMW)
 - \rightarrow 16 perspectives with 5 images per perspective.
 - \rightarrow Perspectives 0, 3, 6, 9 and 12 are used as queries.
 - \rightarrow All the other images, from other prespectives, are used for the **database**.
- \Rightarrow **Predictive Features Codec** (PFC):
 - \rightarrow **Arithmetic** encoding of the residue between

 \Rightarrow **Rate-accuracy:** Average Precision (AP) metrics show an improvement when using more view-points of the same object.

GBS

 \Rightarrow **Bitrate Reduction by using reference views**: 'MDFC—LDPC'

extracted descriptor and nearest centroid.

Rate [Mbits/query]