

Background

Graphic Models

- Structured graphs to express conditional dependence between random variables.
- Belief Propagation
- Performance inference on graphical models
- Marginal distribution computations

Two alternative ways to express dependence between random variables x_1, x_2, x_3 using graph. The dependence can be denoted by edges directly or factor nodes.

Metrics of Belief Propagation

Well known properties about belief propagation

- Exact inference on tree-structured/loop-free graphs
- Computation complexity reduction via intermediate result sharing: messages as beliefs exchange between neighboring nodes
- With proper message scheduling (loop-free), linear complexity with regarding to the size of graph

Issues remaining in standard belief propagation

- Intuition missing for graphs with loops: what is belief propagation actually doing on loopy graphs?
- Performance can degenerate significantly for graphs containing cycles

Overview of This Work

What to expect from this work?

- A new variant of belief propagation algorithm, i.e. α -BP, which generalizes standard belief propagation
- Insights of α -BP, including standard belief propagation, in general graphs
- Performance gain on cyclic graphs

Preliminary

Pairwise Markov random field (MRF)

$$p(\boldsymbol{x}) \propto \prod_{i=1}^{N} f_i(x_i) \prod_{k \in \mathcal{K}} t_k(x_i, x_j), \boldsymbol{x} \in \mathcal{A}^N, \mathcal{A} \subset \mathbb{R}$$

 $\bullet f_i$ is the singleton factor, t_k is the pairwise factor

 $\bullet \mathcal{K}$ is the index set of all pairwise factors

α Belief Propagation as Fully Factorized Approximation

Dong Liu*, Nima N. Moghadam[†], Lars K. Rasmussen^{*}, Jinliang Huang[†], Saikat Chatterjee^{*}

* KTH Royal Institute of Technology, Stockholm, Sweden. Huawei Technologies Sweden AB, Stockholm, Sweden. E-mail: {doli, lkra, sach}@kth.se, {nima.najari.moghadam1, jinliang.huang}@huawei.com

doli@kth.se