α Belief Propagation as Fully Factorized Approximation

Dong Liu*, Nima N. Moghadam ${ }^{\dagger}$, Lars K. Rasmussen*, Jinliang Huang ${ }^{\dagger}$, Saikat Chatterjee*

* KTH Royal Institute of Technology, Stockholm, Sweden.
\dagger Huawei Technologies Sweden AB, Stockholm, Sweden.
E-mail: \{doli, Ikra, sach\}@kth.se, \{nima.najari.moghadam1, jinliang.huang\}@huawei.com

Background

Graphic Models
-Structured graphs to express conditional dependence between random variables.
Belief Propagation

- Performance inference on graphical models
- Marginal distribution computations

Two alternative ways to express dependence between random variables x_{1}, x_{2}, x_{3} using graph. The dependence can be denoted by edges directly or factor nodes.

Metrics of Belief Propagation

Well known properties about belief propagation

- Exact inference on tree-structured/loop-free graphs
- Computation complexity reduction via intermediate result sharing messages as beliefs exchange between neighboring nodes
- With proper message scheduling (loop-free), linear complexity with regarding to the size of graph
Issues remaining in standard belief propagation
- Intuition missing for graphs with loops: what is belief propagation actually doing on loopy graphs?
- Performance can degenerate significantly for graphs containing cycles

Overview of This Work

What to expect from this work?
-A new variant of belief propagation algorithm, i.e. α-BP, which
generalizes standard belief propagation

- Insights of α - BP , including standard belief propagation, in general graphs
- Performance gain on cyclic graphs

Preliminary

Pairwise Markov random field (MRF)

$$
p(\boldsymbol{x}) \propto \prod_{i=1}^{N} f_{i}\left(x_{i}\right) \prod_{k \in \mathcal{K}} t_{k}\left(x_{i}, x_{j}\right), \boldsymbol{x} \in \mathcal{A}^{N}, \mathcal{A} \subset \mathbb{R}
$$

- f_{i} is the singleton factor, t_{k} is the pairwise factor
$-\mathcal{K}$ is the index set of all pairwise factors

Graphical Representation

Factor graph of pairwise MRF, on which messages propagate.
$-\mathrm{Pa}[i]$ is the index set of pairwise factors connecting to variable node x_{i}

- $\mathcal{T}_{\mathrm{Pa}}[i] \backslash k$ is the product of all pairwise factors connecting to x_{i} except for t_{k},
$\mathcal{T}_{\mathrm{Pa} a[i \backslash k}=\prod_{n \in \mathrm{~Pa}[i \backslash k} t_{n}$
$\alpha-B P$

- Key message rules of α-BP

$$
m_{k \rightarrow i}^{\mathrm{new}}\left(x_{i}\right) \propto m_{k \rightarrow i}\left(x_{i}\right)^{1-\alpha}\left[\sum_{x_{j}} t_{k}\left(x_{i}, x_{j}\right)^{\alpha} m_{k \rightarrow j}\left(x_{j}\right)^{1-\alpha} m_{j \rightarrow k}\left(x_{j}\right)\right]
$$

where

$$
m_{j \rightarrow k}\left(x_{j}\right)=\tilde{f}_{j}\left(x_{j}\right) \prod_{n \in \operatorname{Pa}[j \backslash k} m_{n \rightarrow j}\left(x_{j}\right), \tilde{f}_{i}^{\text {new }}\left(x_{i}\right) \propto f_{i}\left(x_{i}\right)^{\alpha} \cdot \tilde{f}_{i}\left(x_{i}\right)^{1-\alpha}
$$

-What does α-BP do: message passing in graph

- Essence of α-BP: minimization of α-divergence

$$
\mathcal{D}_{\alpha}(p \| q)=\frac{\int_{\boldsymbol{x}} \alpha p(\boldsymbol{x})+(1-\alpha) q(\boldsymbol{x})-p(\boldsymbol{x})^{\alpha} q(\boldsymbol{x})^{1-\alpha} d \boldsymbol{x}}{\alpha(1-\alpha)}
$$

where p represents the true, complex measure of the problem, q represents the messages in graph approximating p.
α-BP Generalize BP

- α-BP reduces to BP as $\alpha \rightarrow 1$ (α-divergence reduces to Kullback-Leibler divergence).
- Minimizing Kullback-Leibler divergence leads to BP.

Use α-BP with Other Method

Soft combination of $\alpha-\mathrm{BP}$ and other estimators.
-a) exterior estimation as prior
-b) apply α - BP on a revised graph to include prior information.

Numerical Results

MIMO detection: α-BP with prior via MMSE

Reference

-T. P. Minka, "Expectation propagation for approximate bayesian inference," in Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, ser. UAI '01. San Francisco, CA, USA, 2001, pp.

