
α Belief Propagation as Fully Factorized Approximation
Dong Liu∗, Nima N. Moghadam†, Lars K. Rasmussen∗, Jinliang Huang†, Saikat Chatterjee∗
∗ KTH Royal Institute of Technology, Stockholm, Sweden.
† Huawei Technologies Sweden AB, Stockholm, Sweden.
E-mail: {doli, lkra, sach}@kth.se, {nima.najari.moghadam1, jinliang.huang}@huawei.com

Background

Graphic Models
Structured graphs to express conditional dependence between random
variables.

Belief Propagation
Performance inference on graphical models
Marginal distribution computations
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Two alternative ways to express dependence between random variables x1, x2, x3 using

graph. The dependence can be denoted by edges directly or factor nodes.

Metrics of Belief Propagation

Well known properties about belief propagation
Exact inference on tree-structured/loop-free graphs
Computation complexity reduction via intermediate result sharing:
messages as beliefs exchange between neighboring nodes
With proper message scheduling (loop-free), linear complexity with
regarding to the size of graph

Issues remaining in standard belief propagation
Intuition missing for graphs with loops: what is belief propagation
actually doing on loopy graphs?
Performance can degenerate significantly for graphs containing cycles

Overview of This Work

What to expect from this work?
A new variant of belief propagation algorithm, i.e. α-BP, which
generalizes standard belief propagation
Insights of α-BP, including standard belief propagation, in general graphs
Performance gain on cyclic graphs

Preliminary

Pairwise Markov random field (MRF)

p(x) ∝
N∏

i=1
fi(xi)

∏
k∈K

tk(xi, xj),x ∈ AN,A ⊂ R

fi is the singleton factor, tk is the pairwise factor
K is the index set of all pairwise factors

Graphical Representation

TPa[j]\kTPa[i]\k tk(xi, xj)

xi

fi(xi)

xj

fj(xj)

Factor graph of pairwise MRF, on which messages propagate.

Pa[i] is the index set of pairwise factors connecting to variable node xi
TPa[i]\k is the product of all pairwise factors connecting to xi except for tk,
TPa[i]\k =

∏
n∈Pa[i]\k tn

α-BP
Problem

Graph
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Distribution

Solution

Key message rules of α-BP:

mnew
k→i(xi) ∝ mk→i(xi)

1−α

[∑
xj

tk(xi, xj)
αmk→j(xj)

1−αmj→k(xj)

]
where

mj→k(xj) = f̃j(xj)
∏

n∈Pa[j]\k

mn→j(xj), f̃ new
i (xi) ∝ fi(xi)

α · f̃i(xi)
1−α,

What does α-BP do: message passing in graph
Essence of α-BP: minimization of α-divergence:

Dα(p∥q) =
∫

x αp(x) + (1− α)q(x)− p(x)αq(x)1−αdx
α(1− α)

,

where p represents the true, complex measure of the problem, q
represents the messages in graph approximating p.

α-BP Generalize BP

α-BP reduces to BP as α → 1 (α-divergence reduces to Kullback-Leibler
divergence).
Minimizing Kullback-Leibler divergence leads to BP.

Use α-BP with Other Method

Exterior
Estimator TPa[i]xi

fi(xi)

p̂i(xi)

Soft combination of α-BP and other estimators.
a) exterior estimation as prior
b) apply α-BP on a revised graph to include prior information.

Numerical Results
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Mismatch between MAP and α-BP on binary MRF
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MIMO detection: α-BP with prior via MMSE
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