« Belief Propagation as Fully Factorized Approximation

&b

N X Dong Liu®,

Nima N. Moghadam?, Lars K. Rasmussen*, Jinliang Huang', Saikat Chatterjee*

$KTH &

* KTH Royal Institute of Technology, Stockholm, Sweden.

VETENSKAP " Huawei Technologies Sweden AB, Stockholm, Sweden.
Q%OCH KONST%@ E-mail: {doli, lkra, sach}@kth.se, {nima.najari.moghadaml, jinliang.huang}®@huawei.com
5 0

@'%X%b

Background Use a-BP with Other Method

Graphical Representation

Graphic Models

m Structured graphs to express conditional dependence between random
variables.

Belief Propagation @
m Performance inference on graphical models

m Marginal distribution computations

Exterior
Estimator

Soft combination of a-BP and other estimators.
ma) exterior estimation as prior
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Factor graph of pairwise MRF, on which messages propagate.

{ filz))

mb) apply a-BP on a revised graph to include prior information.

Two alternative ways to express dependence between random variables 1, 2o, 73 using

mPa|i| is the index set of pairwise factors connecting to variable node z;
graph. The dependence can be denoted by edges directly or factor nodes.

. . . Numerical Results
m Tp,i\i is the product of all pairwise factors connecting to z; except for i,
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m A new variant of belief propagation algorithm, i.e. a-BP, which nePalj\k

m What does a-BP do: message passing in graph
m Essence of a-BP: minimization of a-divergence:

generalizes standard belief propagation
m Insights of a-BP, including standard belief propagation, in general graphs
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where p represents the true, complex measure of the problem, ¢ 10 1015 30 3¢ 30 3= 40

represents the messages in graph approximating p. Ratio of Signal to Noise Variance

Pairwise Markov random field (MRF) MIMO detection: a-BP with prior via MMSE

a-BP Generalize BP
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m f; is the singleton factor, 1. is the pairwise factor
m/C is the index set of all pairwise factors
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