

MAC ID Spoofing-Resistant Radio Fingerprinting

<u>**Tong Jian**</u>, Bruno Costa Rendon, Andrey Gritsenko, Jennifer Dy, Kaushik Chowdhury, and Stratis Ioannidis

• Detecting transmission source of signals is a key security mechanism

• Detecting transmission source of signals is a key security mechanism

• Detecting transmission source of signals is a key security mechanism

*K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. R. Chowdhury, "ORACLE: Optimized Radio clAssification through Convolutional neural nEtworks," IEEE INFOCOM 2019, Paris, France, May. 2019

• Detecting transmission source of signals is a key security mechanism

*K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. R. Chowdhury, "ORACLE: Optimized Radio clAssification through Convolutional neural nEtworks," IEEE INFOCOM 2019, Paris, France, May. 2019

- Need for CNNs:
 - End-to-End feature interpreters -> protocol-independent

- Need for CNNs:
 - End-to-End feature interpreters -> protocol-independent
 - Demonstrated performance record on numerous inference problems across application domains

upper right: <u>NLP</u> lower right <u>ImageNet</u> left: <u>Object Detection</u>

Challenges

• Features extracted by deep models cannot be easily interpreted!!!

Indeed learnsORSimply picking upunique I/Q distortionsartifacts present in the data

 Unfortunately, almost all transmissions contain a strongly discriminative artifact, the identity of the transmitting device, which is often included in a transmitted packet

ADS-B

Source:

https://www.mathworks.com/help/examples/xilinxz ynqbasedradio_product/win64/zynqRadioHWSW ADSBAD9361AD9364SL_ModeS_PPM.png

Challenges

• Features extracted by deep models cannot be easily interpreted!!!

OR

Indeed learns unique **I/Q distortions** Simply picking up **artifacts** present in the data

• If latter...

Our Contributions

- □ Slicing technique
 - makes the classifier resistant to learning MAC IDs as features

- Experiments on WiFi and ADS-B demonstrate slicing helps
 - 100 % -> bitwise identical transmissions by 19 devices
 - 99.7% -> MAC ID in the test set are shuffled

□ Framework

Experiments on WiFi protocol

Experiments on ADS-B protocol

Methodology

Experiments on WiFi protocol

Experiments on ADS-B protocol

Methodology: Architecture

CNN Architecture

Methodology: Slicing

• Slicing [Riyaz et al]

*Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, "Deep learning convolutional neural networks for radio identification," IEEE Communications Magazine, vol. 56, no. 9, pp. 146–152, 2018.

Methodology: Slicing

• Randomized slicing:

Methodology: Testing

- We evaluate per-slice accuracy on test set
- We also evaluate per-transmission accuracy
 - Suppose there are N devices, and transmission k has n_k slices
 - p_{ii} is the probability of slice j classified as belonging to device i
 - Sum of probability over all slices:

$$\hat{y} = rg\max_i \sum_{j=1}^{n_k} p_{ij}$$

Methodology

- Advantages of randomized slicing:
 - satisfies the requirement of fixed-size input for CNNs
 - improves classifier's ability to learn shift-invariant features
 - reduces computations during training

Methodology

Experiments on WiFi protocol

Experiments on ADS-B protocol

- Datasets:
 - Bitwise Identical WiFi:

Bitwise identical WiFi transmissions by 19 devices.

- Datasets:
 - Bitwise Identical WiFi:

Bitwise identical WiFi transmissions by 19 devices.

- Datasets:
 - Scrambled MAC WiFi:

MAC IDs are randomly permuted among the signals in the test set.

- Datasets:
 - Scrambled MAC WiFi:

MAC IDs are randomly permuted among the signals in the test set.

Dataset	# Devic	ces # Train transmission/device	# Test transmission/device		Average transmission length			
Scrambled MAC Wi	Fi 100	1000	1000		45183			
					Traini MAC ID	ng Set Data	Tes MAC ID	t Set Data
Results:		1)))	11:11:11	asdlkn2p	22:22:22	2ejrnlfddf		
		1	Transmitter 1		11:11:11	23oidfkjn	33:33:33	dfaldkflkd
Dataset	Slice length	Accuracy Per-slice / Per-transmission))	22:22:22	130df093	33:33:33	huhuhuhu
Scrambled MAC WiFi	1024	0.972/0.997	Transmitter 2		22:22:22	2odfoiejo	11:11:11	omomom
				11)))	33:33:33	asasasas	33:33:33	qdfqfqdq
			Transmitter 3		33:33:33	vcvcvcvc	11:11:11	bhbhbhb

Methodology

Experiments on WiFi protocol

Experiments on ADS-B protocol

• Datasets:

Dataset	# Devices	# Train transmission/device	# Test transmission/device	Average transmission length
ADS-B	50	141	55	9519

Fig. Test Accuracy with Slicing

Summary & Future Directions

- Classifying transmission slices
 - enhances shift-invariance
 - MAC ID spoofing-resistant
 - experiments on WiFi and ADS-B protocols.
- U We are working on...
 - classification over >10K transmitters
 - beating channel variations

