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ABSTRACT

In the context of multivariate time series, a whiteness test
against an MA(1) correlation model is proposed. This test
is built on the eigenvalue distribution (spectral measure) of
the non-Hermitian one-lag sample autocovariance matrix, in-
stead of its singular value distribution. The large dimensional
limit spectral measure of this matrix is derived. To obtain this
result, a control over the smallest singular value of a related
random matrix is provided. Numerical simulations show the
excellent performance of this test.

Index Terms— Antenna array processing, Large non-
Hermitian matrix theory, Limit spectral distribution, Smallest
singular value, Whiteness test in multivariate time series.

1. INTRODUCTION

In the fields of wireless communications, Radar, Sonar, wide-
band antenna array processing, or diagnotic checking, test-
ing whether the observed multidimensional signal is spatially
and temporally a white noise is often a challenging problem.
Given a positive integer N , consider the CN–valued time se-
ries (yk)k∈Z given as

yk = B0xk +B1xk−1,

where B0 and B1 are CN×N deterministic parameter ma-
trices, and where the CN–valued random process (xk)k∈Z
is such that, by writing xk = [xk,0, . . . , xk,N−1]T, the ran-
dom variables {xk,`}+∞,N−1k=−∞,`=0 are centered, independent and
identically distributed. Assuming that the observer has access
to a finite sequence (y0, . . . , yn−1) of n samples, the problem
that we tackle in this paper is to test the null (white noise)
hypothesis

H0 : B0 = IN , B1 = 0,

against the alternative

H1 : B0 = IN , B1 6= 0 and unknown.
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The classical algorithms for performing whiteness tests, such
as the Box-Pierce or the Ljung-Box tests in the univariate
case N = 1, or their multivariate counterparts such as the Li-
McLeod test, are built on the sample autocovariance matrices
Γ̂` = n−1

∑n−1
k=` yky

∗
k−`, for the lags ` = 0, 1. Most of these

tests are well-suited to the case where the signal dimension
N is much smaller than the window length n. Accordingly,
their performance is usually studied in the asymptotic regime
where N is fixed while n→∞.

In many modern signal processing applications such as
the massive MIMO communications, or the large antenna ar-
ray processing for radioastronomy, it happens that the signal
dimension is large and comparable to the window length. In
such situations, it appears more convenient to consider the
asymptotic regime where N,n→∞ in such a way that N/n
converges to a constant γ > 0, and to design tests that are
adapted to this asymptotic regime by appealing to the Large
Random Matrix Theory (LRMT). This route was taken in,
e.g., [1, 2]. We consider herein the same asymptotic regime
that we shall denote as “n→∞”.

Obvioulsy, the matrix Γ̂1 is non-Hermitian. As is well
known, most of the LRMT results pertaining to the spectral
behavior of large random matrices concern Hermitian or sym-
metric matrices. So far, LRMT results related with our prob-
lem are known for certain symmetrized versions of these ma-
trices, such as Γ̂1Γ̂∗1. The tests that are proposed in [1, 2]
and in the other papers in the same strain, rely on the spectral
behavior of such Hermitian matrices.

In this paper, we get rid of the symmetrization and
rather develop a test that is based on the eigenvalue distri-
bution of the one-lag sample autocovariance matrix R̂1 =
n−1

∑n−1
k=0 yky

∗
k−1, where the sum is taken this time modulo-

n (this choice will be justified below). Denote as

µn =
1

N

N−1∑
i=0

δλi(R̂1)

the spectral measure of the matrix R̂1, where {λi(M)}N−1i=0

denote the eigenvalues of a matrix M ∈ CN×N . Note that
this random probability measure is supported by C, due to
the non-Hermitian nature of R̂1. One of the main results of



this paper, Theorem 1 below, shows that under H0, the mea-
sure µn converges weakly in probability as n → ∞ towards
a deterministic probability measure µ that can be determined
(the weak convergence in probability amounts to the conver-
gence

∫
ϕdµn →n→∞

∫
ϕdµ in probability for each contin-

uous and bounded function ϕ : C → R; we use the notation
µn ⇒ µ in probability to refer to this fact).

Based on this result, we propose a whiteness test that
is based on the 2-Wasserstein distance between the spectral
measure of R̂1 and µ. By simulation, this test reveals a much
better performance than more classical tests which are based
on Hermitian matrices built from the observations. A non-
rigorous justification of this performance improvement is that
when performing an eigenvalue-based test, we take advantage
of the higher sensitivity of the eigenvalues of a matrix with re-
spect to perturbations as compared to its singular values. This
intuition needs to be corroborated rigorously by first estab-
lishing the consistency of our test in the regime n → ∞, and
then, by attempting to evaluate its power. This is left for a
future work.

Theorem 1 is stated and discussed in Section 2. Sim-
ulations are provided in Section 3. The main steps of the
proof of Theorem 1 are provided in Section 4. Applying a
now well-known methodology for studying the spectral be-
havior of large non Hermitian matrices (see [3]), one crucial
step in the proof consists in controlling the smallest singu-
lar value of the matrix R̂1 − zIN under H0 for almost all
z ∈ C. Inspired by the technique developed in [4], we provide
a more general result that amounts to controlling the small-
est singular value of the matrix n−1XAX∗ − zIN , where
X =

[
x0 · · · xn−1

]
∈ CN×n, the matrix A is an arbitrary

deterministic matrix such that ‖A‖ and ‖A−1‖ are bounded as
n → ∞, with ‖ · ‖ being the spectral norm, and z ∈ C \ {0}
(Theorem 2). Indeed, it is easy to see that R̂1 = n−1XJX∗

under H0, where J is the circulant matrix

J =


0 1

1
. . .
. . . . . .

1 0

 ∈ Rn×n,

that obviously satisfies the assumptions that we put onA. The
control of the smallest singular value of n−1XAX∗−zIN has
an interest of its own, and can be used among other things to
study the spectral measures of non Hermitian matrices of the
type n−1XAX∗. The details of the proof are provided in [5].

2. LIMIT SPECTRAL MEASURE OF R̂1 UNDER H0

Our standing assumptions on the elements of the matrix X =[
xij
]N−1,n−1
i,j=0

, which can depend on n in general, are the fol-
lowing:

Assumption 1. The random variables {xij}N−1,n−1i,j=0 are
complex, independent and identically distributed with Ex00 =
0, E|x00|2 = 1, E|x00|4 ≤ m4 where m4 is independent of
n, and supn |Ex200| < 1.

Note that the last statement excludes the random variables
xij from being real. The generalization of the results of The-
orem 1 to the real case is under study.

To state our result regarding the limit spectral measure
of n−1XJX∗, we need the following function. Recall that
N/n→ γ > 0. Define

g(y) =
y

y + 1
(1− γ + 2y)2, (0 ∨ (γ − 1)) ≤ y ≤ γ.

Then g−1 exists on the interval [0 ∨ ((γ − 1)3/γ), γ(γ + 1)]
and maps it to [0 ∨ (γ − γ−1), γ]. It is an analytic increasing
function on the interior of the interval.

Theorem 1. Suppose Assumption 1 holds true. Then, there
exists a deterministic probability measure µ such that the
spectral measure µn of n−1XJX∗ satisfies µn ⇒ µ in prob-
ability as n→∞. The limit measure µ is rotationally invari-
ant on C. Let F (r) = µ({z ∈ C : |z| ≤ r}), 0 ≤ r <∞ be
the distribution function of the radial component.
If γ ≤ 1, then

F (r) =

 γ−1g−1(r2) if 0 ≤ r ≤
√
γ(γ + 1),

1 if r >
√
γ(γ + 1).

If γ > 1, then

F (r) =



1− γ−1 if 0 ≤ r ≤ (γ − 1)3/2/
√
γ,

γ−1g−1(r2) if (γ−1)3/2√
γ < r ≤

√
γ(γ + 1),

1 if r >
√
γ(γ + 1).

The theorem implies that the support of µ is the disc {z :
|z| ≤

√
γ(γ + 1)} when γ ≤ 1, and when γ > 1, it is the

ring {z : (γ − 1)3/2/
√
γ ≤ |z| ≤

√
γ(γ + 1)} together with

the point {0} where there is a mass 1− γ−1.
Moreover, F (r) has a positive and analytical density on

the open interval (0∨sign(γ−1)|γ−1|3/2/√γ,
√
γ(γ + 1)).

A closer inspection of g shows that this density is bounded if
γ 6= 1. If γ = 1, then the density is bounded everywhere
except when r ↓ 0. A cumbersome closed form expression
for g−1 (and hence for F (·)) can be obtained by calculating
the root of a third degree polynomial.

3. THE WHITENESS TEST

By Theorem 1, the spectral measure of R̂1 converges weakly
in probability under H0 to the probability measure µ. This
fact can be used to design a whiteness test that is based on



a distance between the spectral measure of R̂1 and µ. We
chose here the 2-Wasserstein distance between these two dis-
tributions. For the sake of comparison with more classical
tests, we also considered the test which consists in compar-
ing N−1 tr R̂1R̂

∗
1 to a threshold. We denote these two tests

as T1 and T2 respectively. Note that T2 is a singular value
based test. To get a more complete picture of the problem, we
also considered a third test which is based on the eigenvalue
distribution of the Hermitian sample covariance matrix

R̂0,1 =
1

n

n−1∑
k=0

[
yk
yk−1

] [
y∗k y∗k−1

]
.

It is known that under H0, the spectral distribution of this ma-
trix, whose support lies in [0,∞), converges weakly in the
almost sure sense to the well-known Marchenko-Pastur dis-
tribution MP2γ with parameter 2γ. This suggests the use of
the 2-Wasserstein distance between the spectral measure of
R̂0,1 and MP2γ . We denote the resulting test as T3.

The ROC curves for these three tests are plotted on Fig-
ures 1 and 2. The tests T1 and T3 were implemented by
sampling µ and MP2γ from the spectra of two large ran-
dom matrices and by using the transport library of the
R software. For Figure 1, we chose B(n)

1 = αIN , while
for Figure 2, the elements bij of B(n)

1 are chosen as bij =
α′ exp(−8|i− j|/N), where α and α′ are non-zero real num-
bers.
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Fig. 1. ROC curves. Setting: B(n)
1 = αIN with α2 = 10−2.5,

(N,n) = (50, 100).

These figures show that T1 clearly outperforms T2 and
T3. This tends to corroborate the intuition that the eigenvalue
sensitivity alluded to earlier, can be beneficial when it comes
to designing white noise tests.

To better understand the behavior of the eigenvalue-based
tests, the next step would be to study the spectral distribution
of R̂1 under H1. This quite non-trivial task is left for future
research.
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Fig. 2. ROC curves. Setting: B(n)
1 is a Toeplitz matrix with

trB
(n)
1 (B

(n)
1 )∗/N = 10−2, (N,n) = (50, 100).

4. MAIN STEPS OF THE PROOF OF THEOREM 1

4.1. General approach

The now well-established general approach for characterizing
the asymptotic behavior of the spectral measure of a random
non-Hermitian matrix can be summarized as follows. The
reader is referred to, e.g., the tutorial [3] for a detailed expo-
sition of this technique.

A probability measure π on C that integrates log | · | near
infinity can be identified through its logarithmic potential,
which is the function

Uπ : C→ (−∞,∞], z 7→ Uπ(z) = −
∫

log |λ−z|π(dλ)

Denote as s0(M) ≥ · · · ≥ sn−1(M) the singular values of
a matrix M ∈ Cn×n. The logarithmic potential Uµn of the
spectral measure µn is given as

Uµn
(z)

= − 1

N

∑
log |λi(R̂1)− zI| = − log |det(R̂1 − zI)|

N

= − log det(R̂1 − zI)(R̂1 − zI)∗

2N
= −

∫
log λ νn,z(dλ),

where the random probability measure

νn,z =
1

N

N−1∑
i=0

δsi(R̂1−zI)

is the singular value distribution of R̂1 − zI . This passage
from the eigenvalues of R̂1 to the singular values of the ma-
trices R̂1− zI , which can be studied more easily, is known as
the hermitization technique.

To evaluate the asymptotic behavior of µn under H0, we
need to study the asymptotic behavior of Uµn(z) for almost



every z ∈ C. To that end, the three following steps are re-
quired:

1. For almost every z ∈ C, there exists a deterministic
probability measure νz such that νn,z ⇒ νz in proba-
bility.

2. log is uniformly integrable in probability with respect
to the sequence νn,z (see [3] for a definition). Since log
is unbounded near zero, this step is the most challeng-
ing one.

Once these two steps are performed, it is known that there
exists a probability measure µ with the logarithmic potential
Uµ(z) =

∫
log λ νz(dλ), and such that µn ⇒ µ in probabil-

ity.

3. Identify µ from Uµ.

Following a standard procedure in the field of LRMT, Step
1 mainly consists in studying the resolvent Qz(η) = (Σz −
ηI2N )−1, where Σz is the Hermitian matrix

Σz =

[
R̂1 − zIN

R̂∗1 − z̄IN

]
,

and η is a complex number such that =η > 0.
Due to the unboundedness of the log near zero, to perform

Step 2, one essentially needs to show that for each z ∈ C\{0},
the smallest singular value sN−1(R̂1−zIN ) cannot converge
to zero too quickly. As said in the introduction, we control
the behavior of this smallest singular value for a more general
matrix model than R̂1 − zIN :

Theorem 2. Let Assumption 1 hold true. Let A ∈ Cn×n be
a deterministic matrix such that

sup
n
‖A‖ <∞ and sup

n
‖A−1‖ <∞.

Then, there exist α, β > 0 such that for each C > 0, t > 0,
and z ∈ C \ {0},

P
[
sN−1(n−1XAX∗ − zIN ) ≤ t, ‖X‖ ≤ C

]
≤ c

(
nαt1/2 + n−β

)
,

where the constant c > 0 depends on C, z, andm4 only.

The principle of the proof of this theorem is sketched be-
low.

Step 3 is based on the fact that a probability measure π
on C can be recovered from its logarithmic potential by the
relation π = −(2π)−1∆Uπ , where ∆ is the distributional
Laplace operator.

4.2. Proof principle of Theorem 2

The general idea of the proof is the following. Defining the
matrix

H =

[
A−1 n−1/2X∗

n−1/2X zIN

]
∈ C(N+n)×(N+n),

and using the inversion formula for partitioned matrices, one
can check that ‖(n−1XAX∗−zIN )−1‖ ≤ ‖H−1‖. Thus, the
problem can be reduced to controlling the smallest singular
value sN+n−1(H) of H . As is well known,

sN+n−1(H) = min
u∈SN+n−1

‖Hu‖,

where SN+n−1 is the unit-sphere of CN+n. Invoking an idea
that has been frequently used in the non-Hermitian LRMT
literature, we partition SN+n−1 into two sets of compressible,
i.e., close to sparse, and incompressible vectors.

The infimum of ‖Hu‖ over the set of compressible vec-
tors is the easier one to handle. Given a fixed vector u ∈
SN+n−1, we first show that P[‖Hu‖ ≤ t] is exponentially
small in n. Then, since the compressible vectors are close to
being sparse, the set of compressible vectors has an ε-net with
a controlled cardinality, and we are done with a union bound
argument.

The set of incompressible vectors is much harder to man-
age, since the ε-net fails for this set. The idea here is that
when u is incompressible, Hu is close to a sum of O(n)
columns of H with comparable weights. The problem is thus
reduced to controlling the distance between an arbitrary col-
umn of H and the subspace generated by the other columns.
The methodology developed in [4] can be used here with
a substantial adaptation to our model, which contains more
structure than the one studied in this reference.
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