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In spite of advances in computer capacity and speed, the 

enormous computational cost of scientific and engineering 

simulations and time constraints makes it impractical to rely 

exclusively on simulation codes. A preferable strategy is to 

replace the expensive simulations using surrogate models 

Motivation 

• Surrogate Modeling: Approximate a high dimensional function 

defined on d-dimensional domain D 

• Modeling and prediction using Random Forest regressor 

• 25 realizations of {20,40,60,80,100} training samples 

• Performance is measured based on 2500 testing samples 
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In spite of advances in computer capacity and speed, the 

enormous computational cost of scientific and engineering 

simulations (or experiments) makes it impractical to rely 

exclusively on simulation codes. A preferable strategy is to 
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An immediate question that a designer may have is based on 

what criterion the various techniques should be used?  

Existing literature lacks methods or procedures for testing 

the relative merits of different methods in a useful manner.  

 

First positive result on the topic: 

• Methods for systematic and comprehensive comparative 

studies of the various techniques. 

• Inverse statistical mechanics technique for generating 

superior sampling schemes. 

• Recommendations for the appropriate use of surrogate 

techniques and how common pitfalls can be avoided.  

 

Kriging regressor: 

Z(x) is stochastic process with correlation function 

 

Two different correlation functions are chosen  

• Gaussian with polynomial of order 2 

• Exponential with polynomial of order 2 
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Regression, ANN, and the Moving Least Square—are 

compared for the construction of safety related 

functions in automotive crash analysis, for a relative 

small sampling size.  Simpson (1999) presents the 

results of ongoing work investigating different 

metamodeling techniques—response surfaces, kriging 
models, radial basis functions, and MARS models—on 

a variety of engineering test problems.  Although the 

existing studies provide useful insights into the various 

approaches considered, a common limitation is that the 

tests are restricted to a very small group of methods and 

test problems, and in many cases only one problem due 

to the expenses associated with testing.  Moreover, 

when using multiple test problems, it is often difficult 

to make comparisons between the test problems when 

they belong to different classes of problems (e.g., 

linear, quadratic, nonlinear, etc.). 

It is our belief that various factors contribute to the 
success of a given metamodeling technique, ranging 

from the nonlinearity of the model behavior, to the 

dimensionality and data sampling technique, to the 

internal parameter settings of the various techniques.  

We contend that instead of using accuracy as the only 

measure, multiple metrics for comparison should be 

considered based on multiple modeling criteria, such as 

accuracy, efficiency, robustness, model transparency, 

and simplicity.  Overall, the knowledge of the 

performance of different metamodeling techniques with 

respect to different modeling criteria is of utmost 
importance to designers when trying to choose an 

appropriate technique for a particular application.   

In this work, we present preliminary results from a 

systematic comparative study which provides insightful 

observations into the performance of various 

metamodeling techniques under different modeling 

criteria, and the impact of the contributing factors to 

their success.  A set of mathematical and engineering 

problems has been selected to represent different 

classes of problems with different degrees of 

nonlinearity, different dimensions, and noisy versus 

smooth behaviors.  Relative large, small, and scarce 
sample sets are also used for each test problem.  Four 

promising metamodeling techniques, namely, 

Polynomial Regression (PR), Kriging (KG), 

Multivariate Adaptive Regression Splines (MARS), and 

Radial Basis Functions (RBF), are compared in this 

study.  Although ANN is a well-known technique, it is 

not included in our study due to the large amount of 

trail-and-error associated with the use of this technique. 

2 Metamodeling Techniques 
The principle features of the four metamodeling 

techniques compared in our study are described in the 

following sections.  

2.1 Polynomial Regression (PR) 

PR models have been applied by a number of 

researchers (Engelund, et al, 1993; Unal, et al., 1996; 

Vitali, et al., 1997; Venkataraman, et al., 1997; Venter, 

et al., 1997; Chen, et al., 1996; Simpson, et al., 1997) in 

designing complex engineering systems.  A second-
order polynomial model can be expressed as: 
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When creating PR models, it is possible to identify 

the significance of different design factors directly from 

the coefficients in the normalized regression model.  

For problems with a large dimension, it is important to 

use linear or second-order polynomial models to narrow 

the design variables to the most critical ones.  In 

optimization, the smoothing capability of polynomial 
regression allows quick convergence of noisy functions 

(see, e.g., Guinta, et al., 1994).  In spite of the 

advantages, there is always a drawback when applying 

PR to model highly nonlinear behaviors.  Higher-order 

polynomials can be used; however, instabilities may 

arise (Barton, 1992), or it may be too difficult to take 

sufficient sample data to estimate all of the coefficients 

in the polynomial equation, particularly in large 

dimensions.  In this work, linear and second-order PR 

models are considered. 

2.2 Kriging Method (KG) 
A kriging model postulates a combination of a 

polynomial model and departures of the form:   
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where Z(x)  is assumed to be a realization of a 

stochastic process with mean zero and spatial 

correlation function given by 

Cov[Z(xi),Z(xj)] = s2 R(xi, xj),            (3) 

where s
2
 is the process variance and R is the 

correlation.  A variety of correlation functions can be 

chosen (cf., Simpson, et al., 1998); however, the 

Gaussian correlation function proposed in (Sacks, et al., 

1989) is the most frequently used.  Furthermore, fj(x) in 

Eqn. 2 is typically taken as a constant term.  In our 

study, we use a constant term for fj(x) and a Gaussian 

correlation function with p=2 and k q parameters, one q 
for each of the k dimensions in the design space. 

In addition to being extremely flexible due to the 
wide range of the correlation functions, the kriging 

method has advantages in that it provides a basis for a 

stepwise algorithm to determine the important factors, 

and the same data can be used for screening and 

building the predictor model (Welch, et al., 1992).  The 

major disadvantage of the kriging process is that model 

construction can be very time-consuming.  Determining 

the maximum likelihood estimates of the q parameters 
used to fit the model is a k-dimensional optimization 
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Challenge: How to classify or compare various functions? 

• Root mean square error (RMSE): overall accuracy 

• Maximum absolute error (MAX): local accuracy 
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leave-one-out cross-validation is actually a measurement for degrees of insensitivity of a 

metamodel to lost information at its data points, while an insensitive metamodel is not 

necessarily accurate. A “validated” model by leave-one-out could be far from the actual as the 

data points may not be able to capture the actual.  Designers are in danger of accepting an 

inaccurate metamodel that is insensitive to lost information at data points, and inaccurate and 

insensitive metamodels might be the results of poor experimental designs (clustering points or 

correlated data points).  On the other hand, with leave-one-out cross validation we are in danger 

of rejecting an accurate metamodel that is also sensitive to lost information at data points.   

 

Given that cross validation is insufficient for assessing models, employing additional points is 
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In statistical mechanics, the Pair Correlation Function (PCF) 

 describes how density varies as a function of distance. 
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Random Latent Hyper Cube Step Blue Noise Poisson Disk 

PCF (g(r)) is related to power spectral density (PSD) via 

Hankel Transform. Thus gives control over spectral properties 

of sampling pattern for synthesis. 

Inverse statistical mechanics technique for sampling  

Weighted least square based PCF matching problem: 

min  ||g(r)-gt(r)||  

Fast gradient descent algorithm to solve the problem. 

Power spectral density answers the question “which 

frequency contains the signal’s power?”   

P(v)=|abs(F(signal))|2  where F(.) is fourier transform 
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• Experiments with several other surrogate modes 

• Establishing bounds on regression error  

 

• Pair Correlation analysis allows theoretical analysis of 

Poisson disk sampling 

• Upper bounds on sample size enable early termination of 

existing Maximal PDS algorithms 

• Effect of the choice of disk radius on the resulting 

spectrum reveals trade-off between low frequency 

aliasing and high frequency oscillations 

          Ackley                   Eggholder                   Booth 

Uniform 

Min Distance 

r rmin 

Maximal PDS: A PDS is maximal if no more 

points can be inserted 

PDS using Pair Correlation Function (PCF) 

In statistical mechanics, PCF describes how density varies as a 

function of distance from a reference. PCF, G(r), is related to 

power spectral density (PSD) via the Hankel Transform 

 

 

 

 

Using the PCF-PSD relation, we can derive the radially averaged 

PSD of Poisson disk sampling: 

 

 

Necessary Conditions 

PSD of PDS 

 

 

 

 

Existing approaches for MPDS experimentally 

obtain the  bounds for N 

Desired Properties:  

• Zero for low frequencies which indicates the range of 

frequencies that can be represented with almost no aliasing 

• Constant for high frequencies which reduces the risk of 

aliasing 

 Impact of the choice of disk radius 

Increased peak height results in 

higher low frequency aliasing 

and larger high frequency 

oscillations 

Trade-off : 

• Spectrum tends to be close to 

zero at low frequencies 

• Significant increase in 

oscillations at high frequencies 

                  Random                           Latin Hyper Cube              Poisson Disk Sampling 

PAIR CORRELATION RADIALLY AVERAGED PSD 

  
Validation of Poisson Disk Sample Designs 

N = 3000 
N = 5000 N = 7000 

Close to theoretical  

bound 

State-of-the-art 

MPDS 
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