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ABSTRACT

Reduced modeling in high-dimensional reproducing kernel
Hilbert spaces offers the opportunity to approximate effi-
ciently non-linear dynamics. In this work, we devise an
algorithm based on low rank constraint optimization and
kernel-based computation that generalizes a recent approach
called “kernel-based dynamic mode decomposition”. This
new algorithm is characterized by a gain in approximation
accuracy, as evidenced by numerical simulations, and in
computational complexity.

Index Terms— Reduced modeling, kernel-based meth-
ods, low-rank approximations, non-linear dynamics

1. INTRODUCTION

In this paper, we consider the problem of efficiently approxi-
mating trajectories xt(θ) ∈ Rp, for different initial conditions
θ from the following high dimension system:{

xt(θ) = ft(xt−1(θ)), t = 2, . . . , T,

x1(θ) = θ,
(1)

where ft : Rp → Rp is an arbitrary function whose direct
evaluation is time consuming when p is large.

Dynamic Mode Decomposition [1, 2, 3] is a popular
framework for this purpose and relies on efficient linear ap-
proximations of the trajectories of (1). It has been extended to
the approximation of non-linear behaviors using a decompo-
sition known as extended DMD (EDMD) [4, 5, 6]. Basically,
DMD and EDMD are identical, except that the latter first
immerses the trajectory through a non-linear mapping Ψ in
a space exhibiting better approximation capabilities. More
explicitly, let Ψ : Rp → H, where H is a Hilbert space
endowed with the inner product 〈·, ·〉H and the induced norm
‖ · ‖H. EDMD approximates system (1) by:{

ηt(θ) = Âkηt−1(θ), t = 2, . . . , T,

η1(θ) = Ψ(θ),
(2)

where Âk : H → H is a linear operator of rank ≤ k, satis-
fying some optimality criterion (specified later), yielding an
approximation of the state xT (θ) by an inverse mapping

x̃T (θ) = Ψ−1(ηT (θ)). (3)

In this paper, we will focus on reduced models of the
form (2)-(3) and where dim(H) � p (including dim(H) =
∞). Such an embedding is appealing due to the ability of
high-dimensional Hilbert spaces to linearize differential equa-
tions [7, 8, 9]. To obtain a “good” trade-off between accuracy
and complexity of the reduced model, one needs to accom-
plish two challenging tasks: i) learn a tractable representation
of a low-rank operator Âk yielding an accurate approxima-
tion of the form (2)-(3), ii) build a low-complexity algorithm
to compute x̃T (θ) satisfying (2)-(3) for a given θ.

State-of-the-art methods e.g., [3, 10, 11] involve a
complexity in dim(H) and thus are non-efficient in high-
dimensional settings. In parallel, authors in [5] have intro-
duced an efficient algorithm to compute (3) for any map Ψ
related to a reproducing kernel Hilbert space (RKHS) [12].
This algorithm known as kernel-based DMD (K-DMD) en-
joys an advantageous complexity linear in p and independent
of dim(H) but relies on restrictive assumptions.

In this work, we propose a new algorithm dubbed “gen-
eralized kernel-based DMD (GK-DMD)” that generalizes K-
DMD to less restrictive assumptions, while being character-
ized by a gain in computational complexity and approxima-
tion accuracy, as evidenced by our numerical simulations.

2. PROBLEM AND EXISTING SOLUTIONS

2.1. The Reduced Modeling Problem

LetB(V,U) denote the class of linear bounded operators from
V to U and let Bk(V,U) = {M ∈ B(V,U) : rank(M) ≤ k}.
In this work, we consider a data-driven approach: the re-
duced model is learnt from a set of representative trajectories
{xt(ϑi)}T

′,N
t=1,i=1 of the high-dimensional system correspond-

ing to N initial conditions {ϑi}Ni=1 (with T ′ possibly differ-
ent from T ). We are interested in the design of an algorithm
computing for any θ ∈ Rp the approximation x̃T (θ) using a
reduced model of the form (2)-(3) and defined as follows.
• Low-rank operator. The low-rank linear operator Âk

is identified to a solution of the constrained optimization
problem

A?k ∈ arg min
A∈Bk(H,H)

‖ΨY −AΨX‖HS , (4)

where ‖ · ‖HS refers to the Hilbert-Schmidt norm and where
operators ΨX, ΨY ∈ B(Rm,H), with m = N(T ′ − 1),



are defined for any w ∈ Rm as the linear combinations
ΨXw =

∑N,T ′−1
i,j=1 Ψ(xj(ϑi))w(T ′−1)(i−1)+j and ΨYw =∑N,T ′−1

i,j=1 Ψ(xj+1(ϑi))w(T ′−1)(i−1)+j . These combinations

involve the training data set {xj(ϑi)}N,T
′

i,j=1 , where the i-th
component of a vector is denoted by subscript i. Operator
(4) is a generalization of the solution of the minimization
problem in [4, 5], subject to a low-rank constraint as in [1, 2].
•Minimum distance estimation. The inverse map (3) is

defined as a minimum distance estimate

Ψ−1(η) ∈ arg min
z∈Rp

‖η −Ψ(z)‖H. (5)

• Low-complexity. The algorithm’s complexity is inde-
pendent of dim(H) and the simulated trajectory length T .

Moreover, in order to enable the independence in T , we
will assume all along this work that H is separable and that
A?k is diagonalizable. These assumptions enable to evaluate
recursion (2) independently of the trajectory length T . Ex-
plicitly, let {ξi}i∈N and {ζi}i∈N be bases of H associated to
the left and right eigen-vectors of A?k, i.e., ξiA?k = λiξi and
A?kζi = λiζi for i ∈ N, where {λi}i∈N is the related sequence
of eigen-values sorted by decreasing magnitude. The finite
rank of operator A?k and the bi-orthogonality of the left and
right eigen-vectors yield A?kΨ =

∑k
i=1 λi〈ξi,Ψ〉Hζi. Using

the notation ϕi(θ) = 〈ξi,Ψ(θ)〉H, (3) then becomes

x̃T (θ) = Ψ−1(

k∑
i=1

νi,T ζi), νi,T = λT−1i ϕi(θ). (6)

2.2. Two Existing Solutions

In the following, we discuss two existing methods which will
serve as ingredients for our GK-DMD algorithm.

Optimal but Intractable. Reduced model (6) with A?k
given by (4) is referred to as low-rank EDMD. A generaliza-
tion of [13, Theorem 4.1] to separable infinite-dimensional
Hilbert spaces provides a closed-form expression of operator
A?k [14]: a solution of problem (4) for arbitrary value of k is

A?k = PZkΨYΨ†X, (7)

with the orthogonal projector PZk = P̂kP̂
∗
k . We use short-

hand SVD notations1 in order to define the operator P̂k ∈
B(Rk,H) : w →

∑k
i=1 u

Z
i wi with Z ∈ B(Rm,H) as

Z = ΨYPΨ∗X
. (8)

It can be shown that if k ≥ m, the solution of (4) boils
down to the solution of the unconstrained problem [3] Â`sk =

ΨYΨ†X.However, it remains to propose a tractable algorithm

1We will use the short-hand SVD notation for M ∈ B(V,U) : M =
UMΣMV ∗M , where UM ∈ B(Cm,U), ΣM ∈ B(Rm,Rm) and V ∗M ∈
B(V,Cm) are defined for any vector w ∈ V, s ∈ Cm as UMs =∑m

j=1 u
M
j sj , (VMw)i = 〈vMi , w〉V and (ΣMs)i = σM

i si.

to build and evaluate reduced model (6) from the closed-form,
but potentially infinite-dimensional, solution A?k.

Tractable but Restrictive. To tackle the high-dimensional
setting dim(H) � p, authors propose to consider in their
seminal work a specific class of mapping Ψ from Rp to
H [5]. They assume H to be a RKHS [12]. Such a space
of functions on Rp is uniquely determined by the choice of
a symmetric positive definite kernel h : Rp × Rp → R,
such that 〈Ψ(z),Ψ(y)〉H = h(y, z) with z, y ∈ Rp. The
advantage of such a construction is that the kernel trick [15]
can be used to compute inner products in the RKHS H with
a complexity equal to that required for the evaluation of the
function h, which is in general independent of dim(H). More
specifically, their method called K-DMD uses the kernel trick
to evaluate inner products with eigen-vectors of Â`sk . As-
suming that the complexity for the evaluation of the kernel
is O(p), the overall complexity of the K-DMD algorithm is
independent of dim(H) and T , which may be efficient for
dim(H)� p.

However, as proposed in [5], K-DMD computes an
approximation of reduced model (6) under restrictive as-
sumptions. In particular the four following assumptions are
needed: i) A?k = Â`sk , i.e., the low-rank constraint in (4) is
ignored; ii) the operator ΨX is full-rank; iii) Ψ−1 is linear;
iv) the Ψ−1ζj’s belong to the span of Y, where the elements
in the set {xt+1(ϑi)}T

′−1,N
t=1,i=1 define the columns {yi}mi=1 of

matrix Y ∈ Rp×m.

3. A GENERALIZED KERNEL-BASED ALGORITHM

3.1. The GK-DMD Algorithm

Our generalized kernel-based algorithm, called GK-DMD, is
exposed in Algorithm 1. It computes the low-rank reduced
model (6) forH being an RKHS, with a complexity indepen-
dent of dim(H) and T and is relieved from the assumptions
made in K-DMD. As for K-DMD, the GK-DMD exploits the
kernel-trick in step 1) and 6), and resorts to an analogous com-
putation of eigen-functions in step 7). The main innovation in
comparison to the latter state-of-the-art algorithm is that GK-
DMD computes reduced model (6) based on the exact solu-
tion (7) of problem (4). To enable the reduced model to be
tractable with the solution (7), GK-DMD relies on the two
following original results:
• the right and left eigen-vectors of the optimal opera-

tor A?k belong to a low-dimensional sub-space of H; their
low-dimensional representations are tractable and computed
in steps 1) to 5) relying on the kernel function;
• the inverse map defined in (5) involves a distance

minimization problem in H; Taking advantage that, in re-
duced model (6), the argument of the inverse belongs to a
low-dimensional subspace of H, the high-dimensional min-
imization problem boils down to a tractable p-dimensional
optimization problem computed in step 8).

These two results are detailed in Section 3.2.



Algorithm 1 : GK-DMD
• Off-line. Inputs: xt(ϑi)’s

1) Compute matrices Ψ∗XΨX, Ψ∗YΨY, Ψ∗YΨX in
Rm×m with the kernel trick.
2) Compute (VΨX

,ΣΨX
) by eigen-decomposition of

Ψ∗XΨX.
3) Compute (VZ,ΣZ) by eigen-decomposition of Z∗Z
with Z given by (8).
4) Compute the two matrices given in Proposition 1
and compute their eigen-vector/eigen-value couples
{(ξ̃i, λ̃i)}ki=1 and {(ζ̃i, λ̃i)}ki=1.
5) Rescale ζ̃i’s so that ζ̃iE ξ̃i=1 with E=SkΨ∗YΨXR

∗.
Outputs: R, Sk, ξ̃i’s, ζ̃i’s and λ̃i’s

• On-line. Inputs: off-line outputs and θ
6) Compute Ψ∗XΨ(θ) in Rm with the kernel trick.
7) Compute eigen-functions {ϕi(θ)}ki=1 defined as

ϕi(θ) = 〈ξi,Ψ(θ)〉H = ξ̃∗iRΨ∗XΨ(θ). (9)

8) Compute x̃T (θ) solving (10);
Output: x̃T (θ).

Let us meanwhile analyze the advantage of the GK-DMD
algorithm in terms of computational complexity. Assuming
that the complexity for the evaluation of the kernel is O(p),
the overall complexity of the proposed algorithm scales in
O(m2(m + p)), just as for K-DMD. We remark that this
complexity is independent of T thanks to the eigen diago-
nalization of A?k, and independent of dim(H) due to the use
of the kernel-trick in the first and last steps of the algorithm.
Nonetheless, reduced modeling is very concerned by the on-
line computational cost, i.e., complexity of computation steps
depending on the input θ. As k ≤ m ≤ p and typically
k � p, GK-DMD is attractive by its on-line complexity in
O(m2k + mp), i.e., it scales linearly with respect to the di-
mension of the reduced model k or the ambient dimension
p, in comparison to O(m2p) operations for K-DMD. Indeed,
the matrix-vector product Ψ∗XΨ(θ) in step 6) and the inver-
sion in step 8) are both computed inO(pm) operations, while
eigen-functions in step 7) require O(m2k) operations.

3.2. Ingredients for Optimality
In the two next sections, we prove that GK-DMD computes
reduced model (6) based on the optimal solution (7) of (4).

3.2.1. Low-Dimensional Representation of A?k
Steps 1) to 5) of our algorithm rely on the following propo-
sition. Let {ξi}ki=1 and {ζi}ki=1 denote the left and right
eigen-vectors of A?k associated to its at most k non-zero
eigen-values {λi}ki=1.

Proposition 1 For i = 1, . . . , k, the left and right eigen-
vectors ofA?k and its eigen-values satisfy ξi = UΨX

ξ̃i, ζi =

P̂k ζ̃i and λi = λ̃i where {(ξ̃i, λ̃i)}ki=1 and {(ζ̃i, λ̃i)}ki=1

denote respectively the first k right eigen-vectors and eigen-
values of the matrices RΨ∗YΨY S∗kSk Ψ∗YΨXR∗ ∈ Rm×m

and Sk Ψ∗YΨY R∗RΨ∗XΨY S∗k ∈ Rm×m, with R =

Σ†ΨX
V ∗ΨX

and Sk = diag((σZ
1 )† · · · (σZ

k )†0 · · · 0)V ∗Z .

Proposition 1 gives a decomposition of the left eigen-
vectors of A?k given in (7). Its proof is detailed in [16].
We deduce from Proposition 1 the closed-form i-th eigen-
function approximation ϕi(θ) for i = 1, . . . , k at any point
θ ∈ Rp given in (9). Moreover, this proposition provides
a closed-form decomposition for the ζi’s, the right eigen-
vectors of A?k and supplies the related eigen-values.Thanks to
Proposition 1, the elements in {(ξi, ζi, λi)}ki=1 issued from
the eigen-decomposition of A?k (which correspond to the
parameters of reduced model (6)) can be written in terms
of their low-dimensional counterpart {(ξ̃i, ζ̃i, λ̃i)}ki=1 effi-
ciently computed in the 5 off-line steps. Note that some
simple algebraic calculus show that the normalization of the
eigen-vectors is ensured if ζ̃i is rescaled as ζ̃∗i Eξ̃i = 1, with
E = SkΨ

∗
YΨXR

∗.

3.2.2. Kernel-Based Inversion
The low-dimensional representation of eigen-vectors of A?k
provided in Proposition 1 constitutes the main ingredient of
the GK-DMD algorithm. However, to achieve the design of
this algorithm, it remains to provide a feasible manner to com-
pute Ψ−1 in (6). Once more, the idea consists in relying on
the kernel trick in order to compute the inverse with a com-
plexity independent of dim(H).

Using Proposition 1, we begin by rewriting (6) in terms of
ζ̃i’s, ϕi(θ)’s and λ̃i’s as

x̃T (θ) = Ψ−1(

k∑
j=1

P̂k ζ̃j λ̃
T−1
j ϕj(θ)) = Ψ−1(ΨYg

θ,T ),

with gθ,T=S∗k(ζ̃1 · · · ζ̃k)
(
λ̃T−1`,1 ϕ1(θ) · · · λ̃T−1`,k ϕk(θ)

)∗
in Rm. This equation implies the inverse of a linear com-
bination of the Ψ(yi)’s, where yi = xt+1(ϑj) with i =
(T ′ − 1)j + t for j = 1, . . . , N and t = 1, . . . , T ′ − 1. From
(5), we rewrite the inverse of the linear combination in terms
of scalar products in H computable using the kernel trick,
i.e., given the kernel h,

x̃T (θ) ∈ arg min
z∈Rp

(
h(z, z)− 2

m∑
i=1

gθ,Ti h(yi, z)

)
. (10)

The minimizer can be computed (up to some accuracy) us-
ing standard optimization methods with a complexity inde-
pendent of dim(H). Moreover, the gradient of the objective
is in general closed-form, which enables the use of efficient
large-scale optimization techniques such as limited memory
quasi-newton methods [17]. In this case, the complexity to
compute the inverse is linear in p.

4. NUMERICAL SIMULATIONS

We assess four data-driven reduced modeling methods for the
approximation of Rayleigh-Bénard convection [18], which is
a standard benchmark model in meteorology. Convection is
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Fig. 1. Above: two maps of absolute vorticity (left, colors in the
range [0, 10−3]) and associated temperature fields (right, colors in
the range [0, 10−6]) for Rayleigh-Bénard convection. Below: re-
construction error εrec as a function of rank k for GK-DMD and
K-DMD with Gaussian (left) and polynomial (right) kernels.

LR-DMD TLS-DMD K-DMD GK-DMD

Fig. 2. Reconstruction error maps produced for k = 5 (above) and
k = 15 (below). Images represent the absolute vorticity (with colors
in the range [0, 10−3]) of the field x̃2(θ)− x2(θ) for a typical θ.

driven by two coupled partial differential equations. After
discretisation of these equations, we obtain a discrete system
with p = 4096 for the evolution of vorticity and temperature.

The benchmark algorithms are: 1) low-rank DMD (LR-
DMD) [13, Algorithm 3], 2) total-least-square DMD (TLS-
DMD) [11], 3) kernel-based DMD (K-DMD) [5], 4) the
proposed generalized kernel DMD (GK-DMD), i.e., Algo-
rithm 1. For the K-DMD and GK-DMD algorithms, we use
a quadratic polynomial kernel or a Gaussian kernel with a
standard deviation of 10 [15].

We study the evolution of the reconstruction error εrec =(∑Nθ
j=1

∑T−1
t=1

‖x̃2(xt(θj))−xt+1(θj)‖22
‖xt+1(θj)‖22

)1/2
, with respect to

the rank k, for a set of initial conditions {θj}Nθj=1. It measures
the discrepancy between the true state xt+1(θj) at time t+ 1
and the approximated state x̃2(xt(θj)) predicted with the
reduced model from the true state at time t.

The training data of size m = 90 is set as follows: 10
initial conditions ϑj are sampled from a uniform distribution
on an hyper-cube inR5 parametrizing solutions of the Lorenz
attractor [19]; then using ϑj to initialize the dynamic model,
we compute trajectories for t = 1, . . . , 10 (resulting in 100
states xt(ϑj)). Examples of xt(ϑj)′s are displayed in Fig-
ure 1. The test data is set as the prolongation of the training
data trajectories: the 10 initial conditions are θj = x10(ϑj)

and trajectories xt(θj) for t = 1, . . . , 10 are computed in the
same way as for the training data set.

We first discuss the results shown in Figure 1 for the Gaus-
sian kernel. Overall, we observe that GK-DMD outperforms
almost everywhere the other methods. While K-DMD and
GK-DMD perform similarly for k ≥ 18, for k < 18 GK-
DMD exhibits a clear gain in accuracy compared to the other
methods reaching almost a decade. The gain in accuracy be-
tween K-DMD and GK-DMD may be due to the fact that the
GK-DMD computes exactly reduced model (6), i.e., consid-
ers A?k instead of Â`sk . Besides, as rank(Ψ∗XΨX) = m, i.e.,
operator ΨX is full-rank, a reasonable explanation for the
similar performances of the two kernel-based methods in the
case where k ≥ 18 is that the low-rank constraint becomes in-
active (implying that Â`sk = A?k), Ψ−1 is well approximated
by a linear mapping and furthermore the Ψ−1ζj’s are well
represented in the span of Y. A lower value on the accuracy
is reached around k slightly greater than 5, suggesting that
only 5 components in H can be explained by a linear model.
Similar results are obtained with a polynomial kernel. Never-
theless, the gain in accuracy is lower for polynomials, reveal-
ing that the reduced model performance is kernel-dependent.

Additionally, the performances of GK-DMD, LR-DMD
and TLS-DMD are comparable for k < 4. Nevertheless, the
accuracy of LR-DMD and TLS-DMD reaches a lower bound
around k ' 4 and then deteriorates as k increases or reaches
an asymptote, suggesting data overfitting.

To complement this quantitative evaluation, we proceed
to the visual inspection of the spatial distribution of the error.
Typical error maps are shown in Figure 2. It displays the ab-
solute vorticity of the bi-variate error field x̃2(θ)− x2(θ) de-
fined over the bi-dimensional grid, where x̃2(θ) denotes the
approximation provided by the algorithms for a given initial
condition θ. Error maps are displayed for two values of the di-
mension k. The distribution of the error produced by K-DMD
reveals that its chaotic behavior as k increases is caused by er-
rors in a wide range of scales. Error maps of the LR-DMD and
TLS-DMD algorithms are very similar. Moreover they seem
not to involve significantly as k increases, except for high fre-
quency revealed at k = 15. The error maps for GK-DMD
show that the decrease in error with respect to k is related to
refinements occurring at increasingly finer scales.

5. CONCLUSION
We have presented a new algorithm for the tractable represen-
tation of a linear low-rank operator characterizing dynamics
embedded in a RKHS. By contrast to existing algorithms, it
both exhibits a low computational complexity and requires
mild assumptions. Numerical simulations illustrate the gain
in accuracy allowed by the proposed algorithm.
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