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ABSTRACT 

 
Active speaker detection (ASD) and virtual cinematography (VC) 
can significantly improve the remote user experience of a video 
conference by automatically panning, tilting and zooming of a video 
conferencing camera: users subjectively rate an expert video 
cinematographer’s video significantly higher than unedited video. 
We describe a new automated ASD and VC that performs within 0.3 
MOS of an expert cinematographer based on subjective ratings with 
a 1-5 scale. This system uses a 4K wide-FOV camera, a depth 
camera, and a microphone array; it extracts features from each 
modality and trains an ASD using an AdaBoost machine learning 
system that is very efficient and runs in real-time. A VC is similarly 
trained using machine learning to optimize the subjective quality of 
the overall experience. To avoid distracting the room participants 
and reduce switching latency the system has no moving parts – the 
VC works by cropping and zooming the 4K wide-FOV video 
stream. The system was tuned and evaluated using extensive 
crowdsourcing techniques and evaluated on a dataset with N=100 
meetings, each 2-5 minutes in length. 
 
Index Terms — Active speaker detection, virtual cinematography, 
video conferencing, machine learning, computer vision, sound 
source localization, multimodal fusion, crowdsourcing 
 

1. INTRODUCTION 
 

Video conferencing is widely used for remote collaboration, and 
many conference rooms in businesses have a video conferencing 
system installed to help facilitate remote collaboration for 
employees. A few commercial video conferencing systems (e.g., [1], 
[2]) have active speaker detection (ASD) to track the active speaker 
and give an enhanced video experience to the far-end (e.g., [3], [4], 
[5]) but the vast majority of video conferencing systems do not. ASD 
allows the far-end participants to see who is currently speaking, 
which is especially useful when the conference room is large or the 
remote video is rendered on a small display due to small screen size, 
small render size, or limited bandwidth. For example, in Figure 1 a 
480p video stream is viewed remotely on a smartphone, captured 
from a 2160p video conferencing camera. If the original video is 
scaled to display at 480p or even in the 2160p video is shown on a 
smartphone, the faces are too small to recognize reliably, greatly 
diminishing the value of video for remote collaboration. In contrast, 
the cropped video stream is much more informative.  
 

 
* Work done while at Microsoft Corp. 

Some of the limitations of existing ASD solutions are (1) available 
commercial systems have high latency (e.g., >2s), (2) the systems 
use multiple mechanical pan-tilt-zoom (PTZ) cameras and/or large 
2D microphone arrays, which can be distracting, (3) the systems are 
expensive, limiting the number of deployments. In this paper, we 
describe a new video conferencing system with ASD that addresses 
these issues. In particular, (1) our system achieves <200ms 
ASD+VC latency (2) the system contains no moving parts or large 
2D microphone arrays; it leverages a depth camera to reduce 
physical size and noise, thus avoiding distractions within the 
conference room, and (3) the system uses a single 4K wide-FOV 
camera to replace multiple expensive PTZ cameras, which 
significantly reduced cost, and (4) our system achieves subjective 
performance within 0.3 MOS (using a 1-5 scale) of an expert virtual 
cinematographer. 
 

 

Figure 1: Left: Original 2160p video; Right: Cropped 480p 
image from a video conference 

2. RELATED WORK 
 

The ASD and VC developed by Zhang et. al [5] is the most related 
work to ours. In that work, a one-dimensional ASD and VC were 
trained using AdaBoost. However, that system only had to estimate 
azimuth, not zoom or elevation, which greatly simplified the 
problem. Commercially available systems such as [1] and [2] solve 
the PTZ problem using large two-dimensional microphone arrays to 
estimate elevation and depth. However, these systems have 
significant delays in changing to the active speaker (>2s). Our 
system requirements are to switch to the active speaker < 200ms 
with no secondary camera nor large 2D microphone array. Systems 
with digital PTZ such as [1] and [6] also have significant delays 
(>2s) and do not handle large rooms.  
 
An early work in multimodal ASD used TDNN [7], and there has 
been significant recent work using DNN-based ASD (e.g., [8], [9], 
[10], [11], [12], [13], [14]). There is now a large dataset created for 
this task [15] with an ASD competition [10]. However, we are not 
aware of any ASD (DNN or otherwise) that does low-latency 



accurate PTZ without large 2D SLL arrays. In addition, this is the 
first study we are aware of that provides a subjective evaluation of 
the VC performance compared to a human expert.  

 
3. SYSTEM OVERVIEW 

 
Our system uses the following multimodal sensors: 

 A 4-element linear microphone array logarithmically spaced as 
shown in Figure 4 with a total width of 215mm. 

 A depth camera with a 512x424 resolution and 0.5-10m 
working range.  

 A 4K (3840x2160) RGB video camera with a 100 HFOV. 
 
The microphone array uses unidirectional microphones and is 
sampled at 16 kHz. The depth camera and RGB camera are 
synchronized with the same start-of-frame signal. Video and audio 
frames use a common timestamp to facilitate synchronization 
between audio/video modalities.  
 
The system dataflow is shown in Figure 2. The microphone array is 
processed with the sound source localization (SSL) method 
described in [17]. SSL features are estimated from the SSL 
probability distribution function (PDF). A set of 15 such features are 
defined using local 𝐿 and global 𝐿 minima and maxima over the 
PDF, described in Table 1. The depth camera is used to estimate the 
location of the conference room table to limit the range for the PTZ 
locations. In addition, depth features based on Haar-like wavelets 
(Figure 5) and short and long-range motion features as estimated in 
[5] are estimated from the depth camera. Finally, the depth camera 
is used to estimate the zoom used in the VC. The RGB video camera 
is used to estimate similar motion and video features; in additional 
a face detector is used to estimate face rectangles. All the above 
features are fed into an AdaBoost-based ASD.  
 
The system architecture is shown in Figure 3. The system runs on a 
single-core of a 2 GHz Intel i5 CPU based embedded PC. There are 
4 threads in the ASD and VC that process the features and evaluate 
the trained AdaBoost ASD and state-machine VC.  
 
The VC is implemented as a state-machine described in Figure 6. 
The VC has four states: (1) stationary, (2) update target for a global 
view (zoom out), (3) update the target for a cut (pan/tilt/zoom), and 
(4) update the window. The parameters have been tuned to 
maximize user ratings as described in later sections. 
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Figure 2: System dataflow 
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Figure 3: System Architecture 
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Figure 4: Sound Source Localization PDF 

  
1. 
𝑳𝒎𝒂𝒙

𝒍 ି𝑳𝒎𝒊𝒏
𝒈

𝑳𝒎𝒂𝒙
𝒈

ି𝑳𝒎𝒊𝒏
𝒈

ౣ౮
ౢ -ౣ

ౝ

ౣ౮
ౝ

-
ౣ
ౝ  

2. 
𝑳𝒎𝒊𝒏

𝒍 ି𝑳𝒎𝒊𝒏
𝒈

𝑳𝒎𝒂𝒙
𝒈

ି𝑳𝒎𝒊𝒏
𝒈  3. 

𝑳𝒂𝒗𝒈
𝒍 ି𝑳𝒎𝒊𝒏

𝒈

𝑳𝒎𝒂𝒙
𝒈

ି𝑳𝒎𝒊𝒏
𝒈  

4. 
𝑳𝒎𝒊𝒅

𝒍 ି𝑳𝒎𝒊𝒏
𝒈

𝑳𝒎𝒂𝒙
𝒈

ି𝑳𝒎𝒊𝒏
𝒈  5. 

𝑳𝒎𝒂𝒙
𝒍

𝑳𝒎𝒊𝒏
𝒍  6. 

𝑳𝒎𝒂𝒙
𝒍

𝑳𝒂𝒗𝒈
𝒍  

7. 
𝑳𝒎𝒊𝒏

𝒍

𝑳𝒂𝒗𝒈
𝒍  8. 

𝑳𝒎𝒊𝒏
𝒍

𝑳𝒂𝒗𝒈
𝒍  9. 

𝑳𝒎𝒂𝒙
𝒍 ି𝑳𝒎𝒊𝒏

𝒍

𝑳𝒂𝒗𝒈
𝒍  

10. 
𝑳𝒎𝒂𝒙

𝒍

𝑳𝒎𝒂𝒙
𝒈  11. 

𝑳𝒎𝒊𝒏
𝒍

𝑳𝒎𝒂𝒙
𝒈  12. 

𝑳𝒂𝒗𝒈
𝒍

𝑳𝒎𝒂𝒙
𝒈  

13. 
𝑳𝒎𝒊𝒅

𝒍

𝑳𝒎𝒂𝒙
𝒈  14. 

𝑳𝒎𝒂𝒙
𝒍 ି𝑳𝒎𝒊𝒏

𝒍

𝑳𝒎𝒂𝒙
𝒈  15. 𝐿𝒎𝒂𝒙

𝒈
− 𝐿௫

 <  𝜖 

Table 1: Audio SSL features 

 

Figure 5: Example video features, Haar-like wavelets 
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Figure 6: Virtual Cinematographer state machine 

4. DATA COLLECTION 
 

The system we have designed requires a significant amount of 
training and test data for supervised learning of the ASD and VC. 
The primary goal for the data capture of meetings is to capture a 
large variety of meeting data, similar to that which the device will 
see in actual usage. 
 
We estimated based on previous work [5] that we would need at least 
100 meetings of 5 minutes each for the training and testing of the 
ASD and VC (we later used cross-validation to check it was 
sufficient). The requirements for the collection are: 

 Coverage of the space of different: 
o Rooms and meeting types 
o Distribution and number of people 
o Speaker variations and distractions 
o Lighting and appearance variations 

 Video frames must be labeled with: 
o Bounding boxes around all heads in view 
o Current active speaker 

 
An example set of meetings from this dataset are shown in Figure 7. 
 

 

Figure 7: Example meetings in the dataset 

We labeled the dataset at 5 FPS, giving 150K total frames to label. 
Assuming 15 seconds to label the 4-20 heads in each frame this 
would be 26 straight days of labeling. To speed this up we used 
crowdsourcing for labeling. The key challenge in this solution is 
getting high-quality output from unskilled workers at low pay 
($0.03/frame). We take the following process to maximize worker 
quality: (1) offline training with feedback, (2)  qualification of raters, 
(3) online training with feedback, (4) online spam checking. Finally, 
we take multiple annotations per frame, repeating until 2 users agree 
for each box. Many frames of video are essentially the same – most 
meeting participants move very little. We use a state-of-the-art 
tracker to interpolate the location of participants between labeled 
frames (Figure 8). Working on an active learning approach we: (1) 
start with a very sparse label set, (2) track forward and backward, 
(3) when the tracker posterior drops below a set threshold for any 
frame, we request labeling. For the 150K frames of collected data, 
we also wish to know who is actively speaking at that moment. We 
follow the same approach as for bounding boxes. Here we show 
annotators a 4-second video with the middle frame being the frame 
of interest. Annotators are asked to pick the speaker at the moment 
bounding boxes are flashed. 
 

 

 
Figure 8: The tracker used in crowdsourced labeling of data 

5. TRAINING AND TESTING 
 

The system was trained and tested using cross-validation. To 
determine whether various components needed further 
improvements we substituted those components with ground truth 
data to check if there were any overall improvements. For example, 
to determine if the SSL algorithm needed improvement we 
substituted the estimated SSL with the ground truth SSL and 
measured the system performance difference (there was little 
difference). The same was done for the ASD and face detector. 

 
The statistics of the ASD features used are given in Figure 9. This 
shows that the depth (and the “normalized” depth which imputes 
missing values) dominates the number of AdaBoost features. Rdiff 
is the long-term image differences, and Diff is the short-term image 
differences.  



 
Figure 9: Statistics of used features in AdaBoost ASD 

 
6. RESULTS AND DISCUSSION 

 
To evaluate the system we utilize both objective and subjective 
metrics. For the objective metrics, we defined four key performance 
indicators (KPIs) that characterize the performance of the ASD and 
VC. These KPIs are defined below: 

 ASD Speaker Detection Rate (SDR): Out of frames containing 
speakers, how often the ASD found a speaker  

 ASD Person Detection Rate (PDR): Out of frames containing 
speakers, how often the ASD found a person  

 ASD False Negative Rate (FNR): Out of all frames, how often 
the ASD didn't fire while someone was speaking 

 VC Acceptable Speaker Rate (ASR): How often the VC 
produced an “acceptable” crop. The crop should show a 
speaker, or show a person if no one is speaking 

 
The results are shown in Table 2. Small rooms fit 6 or fewer people, 
medium rooms fit 7-16 people, and large rooms are >16 people. 
Overall the ASD detects the correct speaker 98.3% of the time, and 
when someone is speaking a person is selected 99.2% of the time (a 
non-person is selected just 0.8% of the time). The VC performance 
is better for small rooms (VC ASR = 96.5%) than large rooms (VC 
ASR = 90.4%), which is expected. 
 

Room  ASD SDR ASD PDR ASD FNR VC ASR 

Small  97.1% 98.5% 0.1% 96.5% 

Medium 99.4% 99.5% 2.5% 91.5% 

Large  97.6% 99.0% 0.5% 90.4% 
Total 98.3% 99.2% 1.3% 91.4% 

Table 2: ASD and VC results 

To determine what KPI criteria is needed to be subjectively good 
enough we performed a subjective test using crowdsourcing. A 
selection of N=100 one minute videos was edited by an expert 
cinematographer and these videos were compared with the VC 
edited videos using the survey form shown in Figure 10. The results 
are shown in Table 3 and show that the VC gets within 0.3 Mean 
Opinion Score (MOS) [18] of an expert cinematographer, which was 
sufficient for our requirements.  
 

Most of the complaints in the VC subjective test had to do with the 
mishandling of meetings when the whiteboard was used, in which 
the VC did not show what the remote person was writing, unlike the 
expert cinematographer.  

 
Figure 10: Survey form used to rate the VC for subjective 

evaluation 

 MOS 
Expert Cinematographer 4.1 ± 0.1 
VC 3.8 ± 0.1 

Table 3: VC subjective results with 95% confidence interval 

7. CONCLUSIONS 
 

We have described an end-to-end system for an ASD and VC that 
uses multisensory input to perform within 0.3 MOS of a human 
expert cinematographer. This is done with low latency and in a 
compact form factor with no moving parts to distract the near-end 
participants. Future enhancements can be made to improve the 
performance including: 

 Improving the voice activity detector to reduce incorrect jumps 
to, for example, squeaky chairs, paper shuffling, etc. 

 Improving whiteboard handling to include the last say one 
minute of what was written on the whiteboard in addition to the 
person writing on the whiteboard 

 Using deep learning for better audio/video features into 
AdaBoost, and perhaps using a DNN instead of AdaBoost for 
improved performance. 
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