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Abstract—Quantum computers threaten to break public-key
cryptography schemes such as DSA and ECDSA in polynomial
time, which poses an imminent threat to secure signal processing.
Ring learning with error (RLWE) lattice-based cryptography
(LBC) is one of the most promising families of post-quantum
cryptography (PQC) schemes in terms of efficiency and versatil-
ity. Two conventional methods to compute polynomial multiplica-
tion, the most compute-intensive routine in the RLWE schemes,
are convolutions and Number Theoretic Transform (NTT).

In this work, we explore the energy efficiency of polynomial
multiplier using systolic architecture for the first time. As an early
exploration, we design two high-throughput systolic array poly-
nomial multipliers, including NTT-based and convolution-based,
and compare them to our low-cost sequential (non-systolic) NTT-
based multiplier. Our sequential NTT-based multiplier achieves
3x speedup over the state-of-the-art FGPA implementation of
the polynomial multiplier in the NewHope-Simple key exchange
mechanism on a low-cost Artix7 FPGA. When synthesized on a
Zynq UltraScale+ FPGA, the NTT-based systolic and convolution-
based systolic designs achieve on average 1.7x and 7.5x speedup
over our sequential NTT-based multiplier respectively, which
can lead to generating over 2x more signatures per second by
CRYSTALS-Dilithium, a PQC digital signature scheme. These
explorations help designers select the right PQC implementa-
tions for making future signal processing applications quantum-
resistant.

Index Terms—Public Key Cryptography, Lattice-based Cryp-
tography, Acceleration, Number Theoretic Transform, Systolic
Array

I. INTRODUCTION

Industry, academia, and government are working together
to realize quantum computers that can achieve unprecedented
levels of performance in specific application domains, such as
biology and chemistry. With the power of quantum computers,
solving problems such as the discrete logarithm problem
promises to nullify the effectiveness of current public-key
cryptography, as illustrated by Shor’s algorithm to factorize
large integers in polynomial time [1]. Breaking public-key
cryptography creates the need to secure signal processing
using newer Quantum-resistant cryptography algorithms.

Fortunately, post-quantum cryptography (PQC) is a vibrant
area of research devoted to studying alternative schemes for
public-key cryptographic protocols, capable of withstanding
quantum cryptanalysis attacks, and executable on classical
computers [2]. The relevance of the problem is demonstrated
by the evaluation and standardization process of PQC algo-
rithms. The most relevant evaluation effort was started with
the submission of potential candidates to the National Institute

of Standards and Technology (NIST) in 2017 and continues
with the evaluation of the candidates until the creation of
recommendations for adoption by standards bodies.

Lattice-based cryptography (LBC) schemes are the most
promising family of quantum-resistant schemes due to their
versatility and superior performance. In both the first and
second rounds of the NIST PQC competition, about half of the
candidates belong to the LBC family. In this work, we adopt
the systolic architecture [3] to accelerate the polynomial mul-
tiplication, which is the heart of a subset of (LBC) algorithms
(i.e., ideal LBC). The compute-intensive polynomial multiplier
kernel can be performed using the Schoolbook algorithm in
O(N2) time complexity [4]. The Discrete Fourier Transform
(DFT) and its fast variant, Fast Fourier Transform (FFT), are
the two other candidates to multiply two polynomials. The
former has a time complexity of O(N2), which involves matrix-
vector multiplication in the time domain, while the latter
has a complexity of O(N.logN). Both schemes are critically
dependent on acceleration to achieve satisfactory performance.
However, increased performance comes at the expense of
energy overheads.

Towards this end, we allow signal processing designers
to evaluate tradeoffs between performance and energy of
quantum-resistant cryptographic schemes using systolic array
architectures [3]. Thus, energy-efficient quantum-resistant sig-
nal processing schemes can be developed for a wide range
of applications, from resource-constrained internet-of-things
(IoT) settings to performance-driven real-time signal process-
ing scenarios.

The contributions of this work are summarized as the
following:

• Analyze, for the first time, energy consumption of various
systolic array implementations of polynomial multiplier
for accelerating quantum-resistant signal processing.

• Replace the NTT-based algorithm as the standard in
LBC with a convolution-based multiplier that leads to
7x improvement in the execution time of the polynomial
multiplier.

• Reach an order of magnitude speedup in computing poly-
nomial multiplier over the state-of-the-art FGPA imple-
mentation of the polynomial multiplier of the NewHope-
Simple key exchange mechanism. [5].



II. BACKGROUND AND RELATED WORK

A lattice L ⊂ Rn is the set of all integer linear combinations
of basis vectors b1, . . . ,bn ∈ Rn. i.e., L =

{∑
aibi : ai ∈ Z

}
.

LBC exploits the hardness of two problems: Short Integer
Solution (SIS) and Learning With Errors (LWE) [6]. Cryp-
tosystems based on the LWE problem, the most common one,
have their foundation in the difficulty of finding the secret key
sk, given (A, pk), where pk = A ∗ sk + e mod q, given the
public key pk, an error vector e with Gaussian distribution, and
a matrix A of constants in Zr×n

q chosen randomly from a uni-
form distribution. Because LWE requires large keys (e.g., 11
KB for Frodo [7]), it can be impractical on devices with limited
on-chip memory. To overcome this limitation, Lyubashevsky
et. al [8] introduced Ring-LWE (RLWE), a derivation of LWE
in which A is implicitly defined as a vector a in the ring
R ≡ Zq[x]/〈xn+1〉. Arithmetic operations for a Ring-LWE-
based scheme are performed over a ring of polynomials. Let
n, a power of two, and p be the degree of the lattice and a
prime number (p = 1 mod 2n), respectively. Zp denotes the
ring of integers modulo p, and xn+1 is an irreducible degree
n polynomial. The quotient ring Rp contains all polynomials
with degree less than n in Zp, that defines Rp = Zp/[xn+1]
in which coefficients of polynomials are in [0,p). Degrees of
the polynomials in RLWE-based schemes vary between 256
[9] and 1024 [10].

In the following, we describe two common methods to
compute the polynomial multiplication.

A. Convolution-based multiplier

The easiest way to multiply two polynomials is to use
the convolution (Schoolbook [11]) with the time complexity
of O(n2) as shown in Algorithm 1. A convolution-based
multiplier can be seen as a discrete feed-forward finite impulse
response (FIR) over the polynomials in R ≡ Zq[x]/〈xn + 1〉.
Due to the inefficiency of the convolution-based multiplier,
there is no notable work that uses it for the acceleration;
however, by using its systolic architecture, we can achieve
considerable performance gains.

B. NTT-based multiplier

Polynomial multiplier is usually implemented by using
the Number Theoretic Transform (NTT), which drops the
time complexity of the polynomial multiplier from O(n2) to
O(n · log n). Polynomials a = a(n − 1) · xn−1 + . . . + a(0)
and b = b(n−1) ·xn−1 + . . .+ b(0) are transformed into their
NTT representations A = A(n − 1) · xn−1 + . . . + A(0) and
B = B(n−1) ·xn−1+ . . .+B(0), and their multiplication can
be computed coefficient-wise as C =

∑n−1
i=0 A(i) · B(i) · xi.

The result c = a ∗ b is obtained after the computation of the
inverse number theoretic transform (NTT−1) of C. Algorithm
2 describes the NTT-based polynomial multiplier. Figure 1
illustrates basic blocks of the NTT-based polynomial multi-
plier. One standard method to perform the number theoretic
transform is Cooley-Tukey (CT) [12], which produces the
result in the bit-reverse order by receiving the input in the
correct order; the other method is Gentleman-Sande (GS) [13],

Algorithm 1 Convolution (Schoolbook)-based Polynomial
Multiplier

1: Initialization: Let a = {a0, a1, a2, ..., an−1} and b =
{b0, b1, b2, ..., bn−1} ∈ Zq[x]/<f(x)> be two polyno-
mials with the length of n, where f(x) = xn + 1 is
an irreducible polynomial with n a power of 2, and
q ≡ 1mod 2n is a large prime number.

2: c←− 0
3: for i = 0 to n− 1 do
4: for j = 0 to j − 1 do
5: sign←− (−1)b(i+j)/nc

6: index←− (i+ j) mod n
7: coeff ←− aibi mod q
8: cindex ←− integer(cindex + sign ∗ coeff) mod q
9: end for

10: end for
11: Return c

Algorithm 2 NTT-based Polynomial Multiplier

1: Initialization: Let a = {a0, a1, a2, ..., an−1} and b =
{b0, b1, b2, ..., bn−1} ∈ Zq[x]/<f(x)> be two polynomi-
als with length of n, where f(x) = xn+1 is an irreducible
polynomial with n a power of 2, and q ≡ 1mod 2n is a
large prime number. w is the n-th root of unity and φ is
the 2n-th root of unity (φ2 = w mod q); w−1 and φ−1

are the inverse of w modq and φ modq, respectively.
2: Precompute: {wi, w−i, φi, φ−i} for i ∈ [0, n− 1]
3: for i = 0 to n− 1 do
4: āi ←− aiφi
5: b̄i ←− biφi
6: end for
7: Ā←− NTTn

w(ā)
8: B̄ ←− NTTn

w(b̄)
9: C̄ = Ā.B̄

10: c̄←− iNTTn
w(C̄)

11: for i = 0 to n− 1 do
12: ci ←− c̄iφ−i
13: end for
14: Return C

which receives the input in the reverse order and produces
the output in the correct order. Similar to [5], we use the
Gentleman-Sande method to compute both NTT and NTT−1,
which needs bit-reverse calculation. As previously mentioned,
NTT designs are known as parallel NTT due to the parallel
use of butterfly processing elements. Pipeline FFT processor
[14] is a high-throughput design of FFT that utilizes single-
path delay feedback. Authors in [15] adopt Pipeline FFT to
design a systolic array polynomial multiplier to develop a high
throughput RLWE cryptoprocessor. In this work, we focus on
the parallel NTT designs and leave the Pipeline FFT for future
work.



C. Previous works

Previous efforts on the acceleration of the NTT mostly
focus on the area and performance of the of the polynomial
multiplier for LBC and leave the energy unexplored [16] [17].
Some efforts have evaluated the energy as well as the area and
performance of NTT accelerators [18], [19], [20]. The only
notable work that uses systolic arrays to accelerate polynomial
multiplier reports only performance and area metrics for
n = 256 and n = 512; however, we report energy as the
primary goal as well as the performance and area for n ∈
(128, 256, 512, 1024).

III. SYSTOLIC ARRAY POLYNOMIAL MULTIPLIER

We use the concept of systolic array architecture to design
polynomial multipliers.

A. Systolic arrays

Today’s systems are intensely designed to move data for
computation. Data movement is highly expensive in terms of
energy consumption and latency compared to computation.
Consequently, the movement of data is the critical bottleneck
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Fig. 1: (a) Polynomial multiplication using NTT units (b) NTT
unit based on only one PE which processes inputs sequentially in
(n/2)logn iterations. In order to perform polynomial multiplication
NTT unit is executed three times (c) NTT-based systolic array
polynomial multiplier encompass logn PE blocks each performs
butterfly operation in n/2 iterations.
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Fig. 2: Convolution-based polynomial multiplier using the systolic array.
Modular reduction (MR) is performed after each multiplication and addition.

in computing systems as applications become more data-
intensive. To address the bottleneck, we need an alternative
architecture – such as a systolic array – to process data
with less data movement. A systolic array consists of a set
processing elements (PE), each capable of performing simple
operations. Each PE is connected to its nearest PEs and
performs operations on data. Data flows from the memory cells
and passes through PEs before returning to the memory cells.
Systolic architecture relieves the repeated memory access
problem for general-purpose computing systems, which in turn
helps to reduce latency.

We design and implement two systolic array polynomial
multipliers including NTT-based and convolution-based sys-
tolic array and compare them to the sequential NTT-based
multiplier.

B. Implementation of systolic array polynomial multiplier

1) NTT-based polynomial multiplier: The conventional
hardware implementation for the NTT-based polynomial mul-
tiplier uses a processing element with only one butterfly
block sequentially (Figure 1-a). We use sequential NTT-
based multiplier (Seq_NTT) as the baseline in our experi-
ments; Seq_NTT, our slowest design, provides 3x speedup
to compute forward and inverse number theoretic transforms
compared to the implementation of [5] on a low-cost Artix7
Xilinx FPGA.

The NTT-based polynomial multiplier can be implemented
using a systolic array (SA_NTTfor the rest of the paper).
Figure 1-b shows a logn array of processing elements, each
executes n/2 butterfly operations on all coefficients of the
input polynomial. In other words, we cascade all logn stages
of the NTT-method and connect them using FIFO buffers.
According to the Gentleman-Sande method, extracting par-
allelism between stages of the NTT is non-trivial; we can
improve the performance of NTT by fusing multiple stages
through the dataflow optimization of a high-level synthesis
(HLS) tool.

2) Convolution-based polynomial multiplier: The time
complexity of the convolution-based polynomial multiplier can
be decreased to O(n) if we adjust the systolic architecture to
use n-cascaded multiply-accumulators (MACs). As shown in
Figure 2, each processing element in the convolution-based
polynomial multiplier (CONV) performs modular reduction
(MR) after each multiplication and addition. The significant
performance improvement comes at the large area and energy
overhead of performing n MACs. We use our optimized



versions of Montgomery [21] and Barrett [22] reduction after
each multiplication and addition, respectively, using only shifts
and additions.

IV. EVALUATION

To perform the synthesis, we use Vivado high-level synthe-
sis (HLS) 2018.2 and select Artix7 and Zynq UltraScale+ as
the target FPGA devices from resource-constrained internet-
of-things (IoT) settings and performance-driven real-time sig-
nal processing scenarios, respectively. We extract the numbers
of reported resources (BRAM, CLB, DSP, FF, and LUT),
maximum achieved frequency, and energy from the post-
implementation process of the HLS tool. The latency of the
polynomial multiplier is the number of execution cycles at the
maximum achieved frequency.

For the polynomial-size of N=1024, Seq_NTT achieves
3x speedup to compute forward and inverse number theoretic
transform compared to the implementation of [5] on a low-
cost Artix7 FPGA. Table I shows the synthesis results of
Seq_NTT as the smallest design along with the two systolic
array polynomial multipliers, SA_NTT (NTT-based) and CONV
(convolution-based on Zynq UltraScale++. Seq_NTT achieves
the highest maximum frequency than SA_NTT and CONV
because of its sequential architecture.

According to Figure 3, with the increase in the degree
of the polynomial from 512 to 1024, the rise in the energy
consumption of CONV is exponential due to the increase in the
number of resources required to satisfy the timing constraints.

Figure 4 shows the latency and energy consumption, ex-
tracted from Table I, of the designs normalized to the
Seq_NTT. For N=1024, e.g., NewHope scheme, SA_NTT
reaches 3x speedup with 7% decrease in energy compared to
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Fig. 3: Increase in the latency and energy of polynomial multiplier
by the increase in the size of the polynomials.

N=256 N=512 N=1024
0

0.5

1
1 1 1

0.59 0.56 0.6

0.14 0.12 0.12

N
or

m
al

iz
ed

La
te

nc
y

Seq_NTT SA_NTT CONV

(a) Latency
N=256 N=512 N=1024

0

10

20

1 1 11.69 1.21 0.93

6.54

14

19

N
or

m
al

iz
ed

E
ne

rg
y

Seq_NTT SA_NTT CONV

(b) Energy
Fig. 4: Comparison of the different polynomial multiplier designs,
normalized to NTT, for polynomials with degree 256, 512 and 1024.

the Seq_NTT; for N=256 and N=512, 1.7x improvement in
latency is achieved with 69% and 21% increase in the energy,
respectively. We suggest employing a systolic array NTT-
based polynomial multiplier for resource-constrained devices
to achieve plausible performance with low energy consumption
to verify the digital signatures and/or perform encrypting and
decryption. The convolution-based systolic array multiplier is
suitable for high-performance servers that can tolerate higher
energy consumption to generate 2x more signatures per second
by CRYSTALS – Dilithium [23], a PQC digital signature
scheme with a 7x speedup in the computing NTT. Forward and
inverse NTT consumes around 65% of cycles in CRYSTALS
– Dilithium to generate a signature.

V. CONCLUSION AND FUTURE WORK

The advent of quantum computing threatens to render
ineffective classical cryptographic schemes to secure signal
processing applications. Emerging quantum-resistant crypto-
graphic schemes show promise, but are hindered by the
computational overhead of essential critical kernels such as
a polynomial multiplication. This work explores, for the first
time, the energy efficiency of array processors for implement-
ing polynomial multipliers with degrees up to 1024.

We design and synthesize an NTT-based and a convolution-
based systolic array polynomial multipliers and compare their
performance, area, and energy with the sequential NTT-based
counterpart. Our serial NTT-based design achieves 3x speedup
on a low-cost Artix7 FPGA compare to the hardware imple-
mentation of NewHope-Simple.

On a Zynq UltraScale+ FPGA, NTT-based systolic array on
average is 1.7x faster than sequential NTT-based polynomial
multiplier with less than 30% increase in the energy. The
convolution-based systolic array on average is 7.5x faster than
serial NTT-based polynomial multiplier with a 13.5x increase
in the energy overhead; thus, convolution-based systolic ar-
ray polynomial multipliers are suitable for high-performance
servers that can tolerate higher energy consumption.

Our future work evaluates the energy efficiency of the
Pipeline FFT processor to perform polynomial multiplica-
tion. Additionally, we make the systolic architecture of the
CONVmore area- and energy-efficient for securing quantum
resistance of future signal processing applications.
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